石墨烯负载Pd-Au合金催化剂及其在C-C键偶联反应中的应用

来源 :深圳大学 | 被引量 : 0次 | 上传用户:WZY86512
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在过去的几十年,均相催化剂因其具有优良的催化活性、反应选择性、较少副反应,在化学中应用十分广泛,但均相催化剂存在难以从反应体系中分离,不易回收且催化剂难以实现循环利用,对环境造成较大威胁。为了解决均相催化剂对环境所造成的污染问题,化学工作者提出了负载型催化体系,制备出多相催化剂以减少此类问题。因此多相催化剂慢慢地被科学家所发现。多相催化剂与反应底物易分离,且具有回收循环再使用等众多优点,所以,将均相催化剂负载于各种载体上而制得的多相催化剂,可有效提高催化剂的稳定性、催化活性及降低科研成本。因此,多相催化剂逐渐的受到化学界的广泛关注。在经典的纳米过渡金属催化的碳-碳键交叉偶联反应中,我们课题组不断地去探索新的高效催化剂,优化反应条件,使偶联反应达到所预想的效果。本论文以绿色化学为出发点,围绕金属催化碳碳键偶联反应开展相关工作,共分为三部分:1)使用廉价、易得、无毒、疏水、分散性良好、孔隙小的二维碳纳米材料作为载体,制备了一种新型石墨烯负载Pd、Au合金催化剂,通过XRD、TEM、元素分析、ICP-AES等测试对催化剂进行表征,最终确定以4-甲氨基吡啶作为配体,通过混合搅拌及金属和配体络合的形式成功的将过渡金属Pd、Au负载在石墨烯表面,通过ICP测得石墨烯负载钯、金的负载量,最终结果为Pd的负载量Pd为0.0157 mmol/g,Au为0.001 mmol/g。2)探索石墨烯负载Pd、Au合金催化剂对Heck反应、Suzuki反应、Sonogashira反应等碳-碳键偶联反应的催化性能的研究。通过对反应体系的优化,当Graphene-Pd-Au的用量为3 mol-100 mol ppm级,在不同的反应条件下,对于Heck reaction、Suzuki reaction、Sonogashira reaction等反应进行相应底物的扩展,最终得到的收率在80%-97%。在对反应进行底物扩展时,由于我们所使用的催化剂用量非常低,从而降低了反应的成本,也解决了产物中的重金属残留问题。3)石墨烯作为载体,因其可以提供良好的微环境,我们猜测以石墨烯为载体极大可能会极大的促进有机转化,从而使其具有更高的催化活性和选择性。总之,通过对石墨烯材料表面进行修饰改造,修饰后石墨烯通过金属离子和配体络合的作用,成功开发了一种新型、简单、高效的石墨烯负载合金催化剂,对碳-碳交叉偶联反应显示出极高的催化活性。该催化剂对以上三种碳-碳键偶联反应催化结果表明,石墨烯作为载体负载过渡金属催化剂具有非常好的应用前景。
其他文献
在高级数控机床、工业机器人、复杂加工设备中存在大量的轮廓控制过程,轮廓控制的目标是使被控对象按照期望轨迹运动。轮廓精度直接影响产品加工质量,因此,实现高精度的轮廓控制,对高精密加工制造业来说具有重要意义。本文以无铁芯永磁同步直线电机(Ironless permanent magnet synchronous linear motor,IPMSLM)为对象,以d SPACE实时控制平台、商用电流驱动
现代建筑大量使用玻璃幕墙,一般的玻璃幕墙没有光谱选择性,它会使室内温度升高,空调的能耗增大。光谱选择性玻璃幕墙能在保持室内光线明亮的同时,选择性屏蔽自然光中带有大量能量的红外光线,从而减小空调的能耗。目前市场上光谱选择性玻璃幕墙使用的涂层材料以氧化铟锡(ITO)和氧化锡锑(ATO)为主,但是铟、锑元素成本依然较高,选择研究相对廉价的替代物铯钨青铜(CsxWO3)具有十分重要的意义。而且铯钨青铜展现
目前便携式电子设备的电池一般为锂离子电池,由于地球上金属锂资源有限,严重阻碍了锂离子电池在便携式储能设备中的应用。金属钠与金属锂同属一个主族,具有类似的化学性质,因此钠离子电池与锂离子电池在充放电过程中具有类似的的反应机制。而且全球金属钠资源丰富、分布广泛、价格低廉,有望成为锂离子电池后一代二次电池。锡基化合物作为钠离子电池负极材料,具有较高的理论比容量、更低的工作电压(vs.Na+/Na),同时
随着互联网时代的到来以及智能手机和计算机的普及,电子商务在全社会的应用迅速普及,电子商务的发展逐步进入集约创新和迅速发展的新时期。电商产业整体的竞争压力不断增长,各大电商平台之间的竞争愈发激烈。为了竞争市场,各大电子商务平台的商家开展了各种折扣促销活动以吸引新老客户。信息技术的进步和平台的发展使得电子商务平台沉淀了大量的消费记录,还从各种关联渠道低成本地收集了客户的大量隐私数据,比如个人基本信息和
近年来,随着区块链技术日趋成熟,其在金融服务、资源共享、贸易管理等领域受到了越来越多的关注。但是,当前区块链技术的一个缺陷就是交易吞吐率低,不能很好的支持高并发的应用场景。目前针对该问题的研究主要集中在设计优化区块链网络框架、设计改进共识协议或应用其它新技术等方面。本文将从区块链节点部署的角度提高开源区块链框架Fabric的吞吐率。首先,本文针对Fabric区块链框架中的事务处理流程,提出了通过合
互联网信息持续快速增长,以搜索引擎为代表的网络信息检索方式已不满足用户需求,推荐算法及系统在电商、娱乐、新闻等等行业已获得广泛关注和应用。近年来,在经典的基于内容的推荐算法、基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法的基础上,学者们提出了许多新的推荐算法,包括隐语义模型LFM(Latent Factor Model)、奇异值分解SVD(Singular Value Decomposit
随着人类工业化进程的发展,对于能源的需求也越来越大。传统化石能源的大量开采,造成的环境污染和能源短缺危机已经威胁到人类的健康和生存。发展二次电池是解决这些问题一种有效的方法。钠离子电池因其资源丰富,价格低廉,引起人们越来越多的关注。但是,钠离子的半径要远大于锂离子的半径,同时低功率密度和较差的循环性能使得开发高性能负极材料成为钠离子电池研究的重点。过渡金属氧化物可通过转化反应嵌入Na+,在过渡金属
锂离子电池的发展与迭代始终离不开负极材料的研究,目前在商业领域主要使用的负极活性材料是石墨类碳材料,无法避免的问题是理论容量较低(372 m Ah g-1),因此对于负极材料的研究亟待解决的问题是如何提升容量。红磷具有极高的理论比容量(2596 m Ah g-1),而且储量十分丰富,因此成为锂离子电池负极活性材料的理想选材之一。但是红磷导电性较差(≈10-12 S m-1)和循环过程中体积膨胀巨大
历史上德国在欧洲舞台一直扮演着关键性的角色。20世纪90年代初,冷战结束、德国重新统一,在这一历史背景之下,“文明力量”作为指导德国国家角色定位和外交政策走向的理论应运而生。该理论受到联邦德国政治文化——“克制文化”的影响,反映了德国对国际形势和外交政策的反思与探索,在理论上属于建构主义的角色分析模式。“文明力量”理论从诞生起就是专门用来描述德国外交政策的理论。本文首先对“文明力量”理论的产生、核
高能反向粒子流是强流离子源运行过程中不可避免的难题,而未来聚变反应需要更高功率和更长脉宽的中性束,因此高能反向粒子流是强流离子源大功率长脉冲运行的研究重点之一。本论文主要从理论出发,分析了高能反向粒子流产生的物理机制,并基于强流离子源实验平台开展高能反向粒子流的实验研究,基于诊断手段进行了高能反向粒子流的热沉积分布等分析,开展强流离子源反向粒子流的特性研究,继而开展抑制反向粒子流危害的优化方法研究