论文部分内容阅读
几十年来,图像特征检测与匹配一直是图像处理的最核心领域之一,是计算机视觉的基石.没有特征检测与匹配就没有SLAM、Sfm、AR、通用图像检索、图像配准、全景图像等视觉任务.本文在回顾几十年来的经典检测算法的基础上,阐述了引用最新的以深度学习为首的机器学习算法后,在本领域取得的最新进展,包括特征点、局部特征子、全局特征子、匹配及优化、端到端框架等所有关键点,展示了算法各自的优缺点.总而言之,面对工业界的宽基线、实时、低算力检测的要求,图像特征检测和匹配仍然是一项未能完整攻克的任务,融合特征点、局部特征