论文部分内容阅读
针对生产线上动态工件的跟踪分拣问题,提出了一种Kalman预测目标和Mean-Shift搜索目标综合应用的跟踪算法,实现了对履带上工件的动态跟踪。该算法首先利用Kalman滤波估计出后续运动目标的位置、速度和匹配范围,然后使用基于HSV色彩空间融合的Mean-Shift算法进行小范围搜索和目标匹配,最后将Mean-Shift算法得到的目标位置作为下一帧Kalman滤波器的输入参数使得后续状态具有预测的能力,迭代执行,直至搜索到目标为止。实验证明,该算法能够有效解决动态工件的跟踪和定位问题。