论文部分内容阅读
摘要: 研究美人蕉、黄菖蒲、水葱水生植物系统在水体中的生长及对水体中有机物、氮、磷的去除情况,以期找出能净化富营养化景观水体的优势水生植物。结果表明:各水生植物在景观水体中均能正常生长,其中平均分蘖数最多的是美人蕉,相对增长率最大的是黄菖蒲,其次是水葱,最低的是美人蕉;各水生植物系统对氮、磷营养物都有一定的降解能力,美人蕉、黄菖蒲、水葱系统对总氮的去除率分别为48 8%、70 0%、30 0%,而对总磷的去除率分别为72 2%、43 4%、33 3%。美人蕉、黄菖蒲水生植物系统分别最适合净化磷含量、氮含量较高的景观水体,在实际应用中,为了同时达到较好的富营养化景观水体氮、磷去除效果,可选择美人蕉与黄菖蒲混种的水生植物系统。
关键词: 水生植物;富营养化;景观水体;修复;净化能力;氮;磷
中图分类号: X173 文献标志码: A
文章编号:1002-1302(2015)08-0354-03
景观水体在提高城市环境品质、增强居住舒适感、改善城市微气候方面发挥着重要作用。然而随着经济、社会的发展和城市化水平的提高,景观水体富营养化程度日益加深,对生态环境和人类健康造成的危害越来越大,因而景观水体富营养化的防治正受到越来越多的重视。
常规的水体污染处理技术包括物理化学、化学、生物处理技术等,然而由于景观水体大多为微污染,具有发生期短、流动性差、美学要求高的特点,难以直接采用常规污水处理技术进行污染治理。人工湿地作为一种污水生态处理技术,不仅具有较高的氮、磷去除率,而且具有建设及运行费用低、维护简单、效果好、适用面广、耐负荷冲击能力强、美化环境等优点 [1],因此适宜用作富营养化景观水体的生态处理系统。植物是人工湿地的重要组成部分之一,能够吸收水体中的污染物质,其根系可以向基质释放氧气、改变水力传导能力、创造生物共生条件,还能够调节微生物和酶的分布。因此,富营养化景观水体生态处理系统中水生植物的构建已经成为环境领域和水生生态学研究的热点问题之一。
不同种类水生植物在污染物吸收能力、根系分布深度、氧气释放量、生物量、抗逆性方面存在差异,因此对水体污染物的净化作用各异。本研究在分析适合北京市现有水体中生长的各种水生植物特点的基础上,以北京市典型富营养化景观水体为研究对象,以水体去除有机物、脱氮、除磷等为目标,通过模型试验研究不同种类的水生植物在水体中的生长情况、污染物净化效率及景观效果,同时考虑植物取材方便等条件,优选出适合富营养化景观水体污染处理的水生植物,并进行优化搭配组合 [2-3]。研究结果可为富营养化景观水体高效修复水生植物的选择和提高系统污水处理效率提供依据。
1 材料与方法
1 1 试验材料
选取北京市广泛分布的3种水生植物美人蕉、黄菖蒲、水葱作为研究对象。供试水生植物均从当地市场上采购,试验前先在试验用水中预培养10 d左右,从中挑选性状统一的健壮植株进行移栽、试验。试验用水取自北京市某景观水体,水质指标如表1所示。
1 2 试验设计
3种水生植物的培养采用150 L的塑料圆桶,水容积均为100 L。供试圆桶水面用有定植孔的塑料泡沫板作为栽培定植板,在定植孔中用海绵固定植物。每桶为1个重复,每种植物设3个重复,并设1组覆有泡沫板无植物的空白对照、无覆盖物无植物的空白对照。每次取样时以原水补充蒸发、蒸腾、采样所耗的水量。
试验于2012年7月至2012年8月在北京建筑大学实验室内进行,持续时间为50 d,室内温度30~35 ℃。
1 3 测定方法
水样的pH值、溶氧量、水温指标每天现场监测1次,化学需氧量(chemical oxygen demand,COD)、总氮含量、总磷含量指标每3~5 d监测1次,各指标测定方法均参照相应国家标准方法。
采用卷尺测量水生植物在种植前后的株高、根长,计算其生长量。
2 结果与分析
[BT2 3]2 1 植物生长情况
在试验过程中,3种植物生长状况均良好,且生长速度快,生物量变化较大。特别是株高和根长较初期有明显增长:植株变高,并产生分蘖;根系上长出大量须根,整个根系在水中宽松展开。除此以外,每株植物也都有新叶长出,叶明显增长、增多。试验过程中各系统植物的生长量变化情况见表2。
由表2可以看出,试验前后美人蕉、黄菖蒲、水葱各系统中植物的平均株高相对增长率分别为140 6%、154 4%、143 0%;最长根长的相对增长率分别为205 4%、333 7%、262 4%。可见各系统植物的生物量变化都较大,尤其以黄菖蒲最为突出,而且3种水生植物的最长根长的相对增长率都比平均株高的相对增长率高。这说明3种水生植物对于富营养化景观水水质有较好的适应能力,可生长出发达的根系,而水生植物根系则为水中污染降解微生物、微型动植物提供了良好的微生态环境 [4-6]。
2 2 总体净化效果
由表3可以看出,在本试验条件下,美人蕉、黄菖蒲、水葱水生植物系统均能有效净化受试水体的水质。相对于空白对照系统,3种植物浮床系统对水体氮、磷污染物均有较好的去除效果,而对COD的去除效果一般。美人蕉、黄菖蒲、水葱水生植物系统对总氮的去除率分别为48 8%、70 0%、30 0%,对NH 4-N的去除率分别81 9%、87 6%、60 0 %,对总磷的去除率分别为72 2%、43 4%、33 3%,对PO 3-4的去除率分别69 0%、42 9%、32 1%,对COD的去除率分别仅为302%、31 7%、29 5%。黄菖蒲水生植物系统对氮(包括总氮、NH 4-N)的去除率高于磷(包括总磷、PO4 3-),而美人蕉水生植物系统对于磷的去除率高于氮,对氮的去除效果稍差。因此在实际应用中,可将美人蕉、黄菖蒲这2种水生植物混合种植于同一系统内,以达到同时去除水体中氮、磷的效果 [7] 2 3 各水生植物系统对COD的去除效果
由图1可以看出,各水生植物系统中COD均有不同程度的降低。试验初期(前5 d),各水生植物系统主要是通过沉淀作用去除COD,去除效果相当且去除速度较快;随着试验的进行,沉淀作用逐渐减弱,而系统中植物直根、须根不断生长,植物根系对COD的吸附、截留作用及根系附着的微生物对COD降解作用逐渐增强,各水生植物系统对COD去除效果有一定的提高,但COD去除效果提高的幅度与试验之初相比较差,降低趋势相对平缓。各水生植物系统对COD的去除效果相差不大,从大到小依次为黄菖蒲系统>美人蕉系统>水葱系统。
黄菖蒲水生植物系统对COD的去除率最高,浓度由初始的28 1 mg/L下降到19 2 mg/L,对COD的去除率达317%;其次为美人蕉水生植物系统,试验结束时COD浓度为19 6 mg/L,对COD的去除率为30 2%;种植水葱的水生植物系统对COD的去除率稍差,为29 5%。
在相同试验条件下,黄菖蒲水生植物系统对COD的去除效果最好,可能是由于系统植物的生物量较大,沉淀、过滤作用明显,而且根系附着的微生物种群数量较多,对COD的吸附、吸收及生物代谢降解过程较为突出 [8-9]。同时,空白对照系统的COD浓度也有一定程度的降低,去除率呈波动趋势,可能是空白水样系统中的有机污染物在自然状态下受到微生物的作用转化所致。
2 4 各水生植物系统对总氮的去除效果
本研究还比较了美人蕉、黄菖蒲、水葱、空白对照系统对试验水体中总氮的去除效果,结果见图2。由图2可以看出,试验初期,各水生植物系统总氮下降趋势较快; 而后总氮下降趋势变得平缓;试验结束时,各植物浮床系统对总氮的去除效果均优于空白对照系统。3种植物浮床系统中,以黄菖蒲系统的去除效果最佳,总氮浓度由开始17 0 mg/L降至5 1 mg/L, 去除率达到70%,美人蕉、水葱系统的总氮去除率分别为488%、30 0%,空白对照系统的总氮去除率仅为5 3%。因此,各系统对总氮的去除能力从强到弱依次为黄菖蒲>美人蕉>水葱>空白系统。
水生植物系统对总氮的去除主要包括沉淀、吸附、挥发,植物的吸收、截留,以及微生物的降解作用 [10]。在最初阶段,总氮的去除主要依赖于沉淀和植物根系的吸附、截留作用,去除速率较快。随着试验的进行,沉淀作用减弱,根系吸附逐渐达到了饱和,总氮的去除主要依靠植物的吸收和根系微生物的降解作用。首先,将有机氮氧化为NH4 -N;其次,在有氧条件下,经硝化细菌的硝化作用将NH4 -N转化为NO3--N;最后,一部分氮被植物吸收,一部分在植物根部所在的底质周围厌氧条件下,由反硝化细菌将NO3--N反硝化为氮气 [11-12],这一系列过程较为缓慢,总氮的去除速率降低。
试验条件相同时,黄菖蒲对总氮的去除效果最好,可能是由于黄菖蒲生长速率高,生长过程中对氮素的需求程度高、吸收能力强。
2 5 各水生植物系统对总磷的去除效果
本研究还探讨了美人蕉、黄菖蒲、水葱、空白对照系统对试验水体中总磷的去除效果。由图3可以看出,包括空白对照系统在内的4个系统中,总磷都有不同程度的降低,且各水生植物系统对总磷的去除效果明显优于空白对照系统。除美人蕉水生植物系统外,其他系统水体总磷降低的速率相对较为平缓,且呈现一定的波动。试验结束时,美人蕉系统水体的总磷浓度由0 90 mg/L降至0 25 mg/L,去除率达72 2%,而黄菖蒲、水葱系统内水体的总磷浓度分别由0 90 mg/L降至0 51、0 60 mg/L,去除率分别为43 3%、33 3%,可见美人蕉水生植物系统对总磷的去除效果最好。
水体中总磷包括PO 3-4、酸式水解磷酸盐、可溶有机磷酸盐、单质磷等形态,植物、微生物对各种形态磷的同化、转化、去除途径不同。可溶性有机磷须通过微生物转化为无机磷,然后被植物同化;单质磷通过植物根的吸附和过滤被去除。试验水体中,总磷主要是以PO 3-4形式存在,各水生植物系统通过植物根区对磷的截留、吸附、吸收、生物降解等作用去除PO 3-4。
在相同条件下,美人蕉水生植物系统对于总磷的去除效果较好,可能是因为美人蕉水生植物系统具有生物量大、对总磷的吸收吸附性能好、根区酶活性强,以及聚磷菌数量多等优势 [13-14]。因此,可用美人蕉水生植物系统来净化磷含量较高的景观水体。
根据以上研究结果,从水生植物生物量变化,对COD、氮、磷污染物的去除效果和特性方面综合考虑,美人蕉、黄菖蒲水生植物系统对富营养化景观水体中氮、磷均有较好的去除效果。其中,黄菖蒲水生植物系统对氮的去除率高于磷,更适合于净化氮含量较高的景观水体;美人蕉水生植物系统对于磷的去除率高于氮,对氮的去除效果稍差,更适合净化磷含量较高的景观水体。在实际工程应用中,为同时取得较好的水体氮、磷去除效果,可将美人蕉、黄菖蒲2种水生植物混合种植应用 [15]。
3 结论
通过美人蕉、黄菖蒲、水葱水生植物系统的植物生长量和生长率变化、在水体中的适应性和对水体COD、总氮、总磷净化效果的研究,得出以下结论:(1)美人蕉、黄菖蒲、水葱水生植物系统的相对增长率变化从大到小依次为黄菖蒲>水葱>美人蕉;(2)美人蕉、黄菖蒲、水葱3种水生植物系统对景观水体中氮、磷等污染物有较好的去除效果,其中黄菖蒲系统对氮的去除效果最好,美人蕉系统对磷的去除效果最好;(3)美人蕉、黄菖蒲水生植物系统分别最适合净化磷含量、氮含量较高的景观水体。在实际应用中,为了同时达到较好的富营养化景观水体氮、磷的去除效果,可选择美人蕉与黄菖蒲混种的水生植物系统。
参考文献:
[1] 张振华,高 岩,郭俊尧,等 富营养化水体治理的实践与思考——以滇池水生植物生态修复实践为例[J] 生态与农村环境学报,2014,30(1):129-135 [2]江福英,陈 昕,罗安程 几种植物在模拟污水处理湿地中根际微生物功能群特征的研究[J] 农业环境科学学报,2010,29(4):764-768
[3]陈丽丽,李秋华,高廷进,等 模拟生态浮床种植6种水生植物改善水质效果研究[J] 水生态学杂志,2012,33(4):78-83
[4]胡智勇,陆开宏,梁晶晶 根际微生物在污染水体植物修复中的作用[J] 环境科学与技术,2010,33(5):75-80
[5]Landman M J,Ling N Fish health changes in Lake Okaro,New Zealand:effects of nutrient remediation,season or eutrophication?[J] Hydrobiologia,2011,661(1):65-79
[6]郑建初,盛 婧,张志勇,等 凤眼莲的生态功能及其利用[J] 江苏农业学报,2011,27(2):426-429
[7]毛 昕,王丽红,张光生 不同生育期美人蕉-微生物修复富营养化水体[J] 环境工程学报,2013,7(12):4689-4696
[8]傅明辉,郑李军,蒋丽花,等 富营养化水体中水生植物根际微生物群落研究[J] 环境科学与技术,2013,36(S2):133-137
[9] 陆开宏,胡智勇,梁晶晶,等 富营养水体中2种水生植物的根际微生物群落特征[J] 中国环境科学,2010,30(11):1508-1515
[10] 张志勇,郑建初,刘海琴,等 凤眼莲对不同程度富营养化水体氮磷的去除贡献研究[J] 中国生态农业学报,2010,18(1):152-157
[11]Han P,Kumar P,Ong B L Remediation of nutrient-rich waters using the terrestrial plant,Pandanus amaryllifolius Roxb[J] Journal of Environmental Sciences-China,2014,26(2):404-414
[12]李先会,朱建坤,施练东,等 富营养化水体细菌去除氮磷能力研究[J] 环境科学与技术,2009,32(4):28-32
[13]Stow C A,Dyble J,Kashian D R,et al Phosphorus targets and eutrophication objectives in Saginaw Bay:A 35 year assessment[J] Journal of Great Lakes Research,2014,40(1):4-10
[14]李淑英,周元清,胡 承,等 水生植物组合后根际微生物及水净化研究[J] 环境科学与技术,2010,33(3):148-153
[15]白晓琴,赵 颖,崔 雪,等 几种植物在治理富营养化水体中的作用分析[J] 天津化工,2013,27(5):13-16
关键词: 水生植物;富营养化;景观水体;修复;净化能力;氮;磷
中图分类号: X173 文献标志码: A
文章编号:1002-1302(2015)08-0354-03
景观水体在提高城市环境品质、增强居住舒适感、改善城市微气候方面发挥着重要作用。然而随着经济、社会的发展和城市化水平的提高,景观水体富营养化程度日益加深,对生态环境和人类健康造成的危害越来越大,因而景观水体富营养化的防治正受到越来越多的重视。
常规的水体污染处理技术包括物理化学、化学、生物处理技术等,然而由于景观水体大多为微污染,具有发生期短、流动性差、美学要求高的特点,难以直接采用常规污水处理技术进行污染治理。人工湿地作为一种污水生态处理技术,不仅具有较高的氮、磷去除率,而且具有建设及运行费用低、维护简单、效果好、适用面广、耐负荷冲击能力强、美化环境等优点 [1],因此适宜用作富营养化景观水体的生态处理系统。植物是人工湿地的重要组成部分之一,能够吸收水体中的污染物质,其根系可以向基质释放氧气、改变水力传导能力、创造生物共生条件,还能够调节微生物和酶的分布。因此,富营养化景观水体生态处理系统中水生植物的构建已经成为环境领域和水生生态学研究的热点问题之一。
不同种类水生植物在污染物吸收能力、根系分布深度、氧气释放量、生物量、抗逆性方面存在差异,因此对水体污染物的净化作用各异。本研究在分析适合北京市现有水体中生长的各种水生植物特点的基础上,以北京市典型富营养化景观水体为研究对象,以水体去除有机物、脱氮、除磷等为目标,通过模型试验研究不同种类的水生植物在水体中的生长情况、污染物净化效率及景观效果,同时考虑植物取材方便等条件,优选出适合富营养化景观水体污染处理的水生植物,并进行优化搭配组合 [2-3]。研究结果可为富营养化景观水体高效修复水生植物的选择和提高系统污水处理效率提供依据。
1 材料与方法
1 1 试验材料
选取北京市广泛分布的3种水生植物美人蕉、黄菖蒲、水葱作为研究对象。供试水生植物均从当地市场上采购,试验前先在试验用水中预培养10 d左右,从中挑选性状统一的健壮植株进行移栽、试验。试验用水取自北京市某景观水体,水质指标如表1所示。
1 2 试验设计
3种水生植物的培养采用150 L的塑料圆桶,水容积均为100 L。供试圆桶水面用有定植孔的塑料泡沫板作为栽培定植板,在定植孔中用海绵固定植物。每桶为1个重复,每种植物设3个重复,并设1组覆有泡沫板无植物的空白对照、无覆盖物无植物的空白对照。每次取样时以原水补充蒸发、蒸腾、采样所耗的水量。
试验于2012年7月至2012年8月在北京建筑大学实验室内进行,持续时间为50 d,室内温度30~35 ℃。
1 3 测定方法
水样的pH值、溶氧量、水温指标每天现场监测1次,化学需氧量(chemical oxygen demand,COD)、总氮含量、总磷含量指标每3~5 d监测1次,各指标测定方法均参照相应国家标准方法。
采用卷尺测量水生植物在种植前后的株高、根长,计算其生长量。
2 结果与分析
[BT2 3]2 1 植物生长情况
在试验过程中,3种植物生长状况均良好,且生长速度快,生物量变化较大。特别是株高和根长较初期有明显增长:植株变高,并产生分蘖;根系上长出大量须根,整个根系在水中宽松展开。除此以外,每株植物也都有新叶长出,叶明显增长、增多。试验过程中各系统植物的生长量变化情况见表2。
由表2可以看出,试验前后美人蕉、黄菖蒲、水葱各系统中植物的平均株高相对增长率分别为140 6%、154 4%、143 0%;最长根长的相对增长率分别为205 4%、333 7%、262 4%。可见各系统植物的生物量变化都较大,尤其以黄菖蒲最为突出,而且3种水生植物的最长根长的相对增长率都比平均株高的相对增长率高。这说明3种水生植物对于富营养化景观水水质有较好的适应能力,可生长出发达的根系,而水生植物根系则为水中污染降解微生物、微型动植物提供了良好的微生态环境 [4-6]。
2 2 总体净化效果
由表3可以看出,在本试验条件下,美人蕉、黄菖蒲、水葱水生植物系统均能有效净化受试水体的水质。相对于空白对照系统,3种植物浮床系统对水体氮、磷污染物均有较好的去除效果,而对COD的去除效果一般。美人蕉、黄菖蒲、水葱水生植物系统对总氮的去除率分别为48 8%、70 0%、30 0%,对NH 4-N的去除率分别81 9%、87 6%、60 0 %,对总磷的去除率分别为72 2%、43 4%、33 3%,对PO 3-4的去除率分别69 0%、42 9%、32 1%,对COD的去除率分别仅为302%、31 7%、29 5%。黄菖蒲水生植物系统对氮(包括总氮、NH 4-N)的去除率高于磷(包括总磷、PO4 3-),而美人蕉水生植物系统对于磷的去除率高于氮,对氮的去除效果稍差。因此在实际应用中,可将美人蕉、黄菖蒲这2种水生植物混合种植于同一系统内,以达到同时去除水体中氮、磷的效果 [7] 2 3 各水生植物系统对COD的去除效果
由图1可以看出,各水生植物系统中COD均有不同程度的降低。试验初期(前5 d),各水生植物系统主要是通过沉淀作用去除COD,去除效果相当且去除速度较快;随着试验的进行,沉淀作用逐渐减弱,而系统中植物直根、须根不断生长,植物根系对COD的吸附、截留作用及根系附着的微生物对COD降解作用逐渐增强,各水生植物系统对COD去除效果有一定的提高,但COD去除效果提高的幅度与试验之初相比较差,降低趋势相对平缓。各水生植物系统对COD的去除效果相差不大,从大到小依次为黄菖蒲系统>美人蕉系统>水葱系统。
黄菖蒲水生植物系统对COD的去除率最高,浓度由初始的28 1 mg/L下降到19 2 mg/L,对COD的去除率达317%;其次为美人蕉水生植物系统,试验结束时COD浓度为19 6 mg/L,对COD的去除率为30 2%;种植水葱的水生植物系统对COD的去除率稍差,为29 5%。
在相同试验条件下,黄菖蒲水生植物系统对COD的去除效果最好,可能是由于系统植物的生物量较大,沉淀、过滤作用明显,而且根系附着的微生物种群数量较多,对COD的吸附、吸收及生物代谢降解过程较为突出 [8-9]。同时,空白对照系统的COD浓度也有一定程度的降低,去除率呈波动趋势,可能是空白水样系统中的有机污染物在自然状态下受到微生物的作用转化所致。
2 4 各水生植物系统对总氮的去除效果
本研究还比较了美人蕉、黄菖蒲、水葱、空白对照系统对试验水体中总氮的去除效果,结果见图2。由图2可以看出,试验初期,各水生植物系统总氮下降趋势较快; 而后总氮下降趋势变得平缓;试验结束时,各植物浮床系统对总氮的去除效果均优于空白对照系统。3种植物浮床系统中,以黄菖蒲系统的去除效果最佳,总氮浓度由开始17 0 mg/L降至5 1 mg/L, 去除率达到70%,美人蕉、水葱系统的总氮去除率分别为488%、30 0%,空白对照系统的总氮去除率仅为5 3%。因此,各系统对总氮的去除能力从强到弱依次为黄菖蒲>美人蕉>水葱>空白系统。
水生植物系统对总氮的去除主要包括沉淀、吸附、挥发,植物的吸收、截留,以及微生物的降解作用 [10]。在最初阶段,总氮的去除主要依赖于沉淀和植物根系的吸附、截留作用,去除速率较快。随着试验的进行,沉淀作用减弱,根系吸附逐渐达到了饱和,总氮的去除主要依靠植物的吸收和根系微生物的降解作用。首先,将有机氮氧化为NH4 -N;其次,在有氧条件下,经硝化细菌的硝化作用将NH4 -N转化为NO3--N;最后,一部分氮被植物吸收,一部分在植物根部所在的底质周围厌氧条件下,由反硝化细菌将NO3--N反硝化为氮气 [11-12],这一系列过程较为缓慢,总氮的去除速率降低。
试验条件相同时,黄菖蒲对总氮的去除效果最好,可能是由于黄菖蒲生长速率高,生长过程中对氮素的需求程度高、吸收能力强。
2 5 各水生植物系统对总磷的去除效果
本研究还探讨了美人蕉、黄菖蒲、水葱、空白对照系统对试验水体中总磷的去除效果。由图3可以看出,包括空白对照系统在内的4个系统中,总磷都有不同程度的降低,且各水生植物系统对总磷的去除效果明显优于空白对照系统。除美人蕉水生植物系统外,其他系统水体总磷降低的速率相对较为平缓,且呈现一定的波动。试验结束时,美人蕉系统水体的总磷浓度由0 90 mg/L降至0 25 mg/L,去除率达72 2%,而黄菖蒲、水葱系统内水体的总磷浓度分别由0 90 mg/L降至0 51、0 60 mg/L,去除率分别为43 3%、33 3%,可见美人蕉水生植物系统对总磷的去除效果最好。
水体中总磷包括PO 3-4、酸式水解磷酸盐、可溶有机磷酸盐、单质磷等形态,植物、微生物对各种形态磷的同化、转化、去除途径不同。可溶性有机磷须通过微生物转化为无机磷,然后被植物同化;单质磷通过植物根的吸附和过滤被去除。试验水体中,总磷主要是以PO 3-4形式存在,各水生植物系统通过植物根区对磷的截留、吸附、吸收、生物降解等作用去除PO 3-4。
在相同条件下,美人蕉水生植物系统对于总磷的去除效果较好,可能是因为美人蕉水生植物系统具有生物量大、对总磷的吸收吸附性能好、根区酶活性强,以及聚磷菌数量多等优势 [13-14]。因此,可用美人蕉水生植物系统来净化磷含量较高的景观水体。
根据以上研究结果,从水生植物生物量变化,对COD、氮、磷污染物的去除效果和特性方面综合考虑,美人蕉、黄菖蒲水生植物系统对富营养化景观水体中氮、磷均有较好的去除效果。其中,黄菖蒲水生植物系统对氮的去除率高于磷,更适合于净化氮含量较高的景观水体;美人蕉水生植物系统对于磷的去除率高于氮,对氮的去除效果稍差,更适合净化磷含量较高的景观水体。在实际工程应用中,为同时取得较好的水体氮、磷去除效果,可将美人蕉、黄菖蒲2种水生植物混合种植应用 [15]。
3 结论
通过美人蕉、黄菖蒲、水葱水生植物系统的植物生长量和生长率变化、在水体中的适应性和对水体COD、总氮、总磷净化效果的研究,得出以下结论:(1)美人蕉、黄菖蒲、水葱水生植物系统的相对增长率变化从大到小依次为黄菖蒲>水葱>美人蕉;(2)美人蕉、黄菖蒲、水葱3种水生植物系统对景观水体中氮、磷等污染物有较好的去除效果,其中黄菖蒲系统对氮的去除效果最好,美人蕉系统对磷的去除效果最好;(3)美人蕉、黄菖蒲水生植物系统分别最适合净化磷含量、氮含量较高的景观水体。在实际应用中,为了同时达到较好的富营养化景观水体氮、磷的去除效果,可选择美人蕉与黄菖蒲混种的水生植物系统。
参考文献:
[1] 张振华,高 岩,郭俊尧,等 富营养化水体治理的实践与思考——以滇池水生植物生态修复实践为例[J] 生态与农村环境学报,2014,30(1):129-135 [2]江福英,陈 昕,罗安程 几种植物在模拟污水处理湿地中根际微生物功能群特征的研究[J] 农业环境科学学报,2010,29(4):764-768
[3]陈丽丽,李秋华,高廷进,等 模拟生态浮床种植6种水生植物改善水质效果研究[J] 水生态学杂志,2012,33(4):78-83
[4]胡智勇,陆开宏,梁晶晶 根际微生物在污染水体植物修复中的作用[J] 环境科学与技术,2010,33(5):75-80
[5]Landman M J,Ling N Fish health changes in Lake Okaro,New Zealand:effects of nutrient remediation,season or eutrophication?[J] Hydrobiologia,2011,661(1):65-79
[6]郑建初,盛 婧,张志勇,等 凤眼莲的生态功能及其利用[J] 江苏农业学报,2011,27(2):426-429
[7]毛 昕,王丽红,张光生 不同生育期美人蕉-微生物修复富营养化水体[J] 环境工程学报,2013,7(12):4689-4696
[8]傅明辉,郑李军,蒋丽花,等 富营养化水体中水生植物根际微生物群落研究[J] 环境科学与技术,2013,36(S2):133-137
[9] 陆开宏,胡智勇,梁晶晶,等 富营养水体中2种水生植物的根际微生物群落特征[J] 中国环境科学,2010,30(11):1508-1515
[10] 张志勇,郑建初,刘海琴,等 凤眼莲对不同程度富营养化水体氮磷的去除贡献研究[J] 中国生态农业学报,2010,18(1):152-157
[11]Han P,Kumar P,Ong B L Remediation of nutrient-rich waters using the terrestrial plant,Pandanus amaryllifolius Roxb[J] Journal of Environmental Sciences-China,2014,26(2):404-414
[12]李先会,朱建坤,施练东,等 富营养化水体细菌去除氮磷能力研究[J] 环境科学与技术,2009,32(4):28-32
[13]Stow C A,Dyble J,Kashian D R,et al Phosphorus targets and eutrophication objectives in Saginaw Bay:A 35 year assessment[J] Journal of Great Lakes Research,2014,40(1):4-10
[14]李淑英,周元清,胡 承,等 水生植物组合后根际微生物及水净化研究[J] 环境科学与技术,2010,33(3):148-153
[15]白晓琴,赵 颖,崔 雪,等 几种植物在治理富营养化水体中的作用分析[J] 天津化工,2013,27(5):13-16