富营养化景观水体高效修复水生植物的筛选

来源 :江苏农业科学 | 被引量 : 0次 | 上传用户:ysabby2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要: 研究美人蕉、黄菖蒲、水葱水生植物系统在水体中的生长及对水体中有机物、氮、磷的去除情况,以期找出能净化富营养化景观水体的优势水生植物。结果表明:各水生植物在景观水体中均能正常生长,其中平均分蘖数最多的是美人蕉,相对增长率最大的是黄菖蒲,其次是水葱,最低的是美人蕉;各水生植物系统对氮、磷营养物都有一定的降解能力,美人蕉、黄菖蒲、水葱系统对总氮的去除率分别为48 8%、70 0%、30 0%,而对总磷的去除率分别为72 2%、43 4%、33 3%。美人蕉、黄菖蒲水生植物系统分别最适合净化磷含量、氮含量较高的景观水体,在实际应用中,为了同时达到较好的富营养化景观水体氮、磷去除效果,可选择美人蕉与黄菖蒲混种的水生植物系统。
  关键词: 水生植物;富营养化;景观水体;修复;净化能力;氮;磷
  中图分类号: X173 文献标志码: A
  文章编号:1002-1302(2015)08-0354-03
  景观水体在提高城市环境品质、增强居住舒适感、改善城市微气候方面发挥着重要作用。然而随着经济、社会的发展和城市化水平的提高,景观水体富营养化程度日益加深,对生态环境和人类健康造成的危害越来越大,因而景观水体富营养化的防治正受到越来越多的重视。
  常规的水体污染处理技术包括物理化学、化学、生物处理技术等,然而由于景观水体大多为微污染,具有发生期短、流动性差、美学要求高的特点,难以直接采用常规污水处理技术进行污染治理。人工湿地作为一种污水生态处理技术,不仅具有较高的氮、磷去除率,而且具有建设及运行费用低、维护简单、效果好、适用面广、耐负荷冲击能力强、美化环境等优点 [1],因此适宜用作富营养化景观水体的生态处理系统。植物是人工湿地的重要组成部分之一,能够吸收水体中的污染物质,其根系可以向基质释放氧气、改变水力传导能力、创造生物共生条件,还能够调节微生物和酶的分布。因此,富营养化景观水体生态处理系统中水生植物的构建已经成为环境领域和水生生态学研究的热点问题之一。
  不同种类水生植物在污染物吸收能力、根系分布深度、氧气释放量、生物量、抗逆性方面存在差异,因此对水体污染物的净化作用各异。本研究在分析适合北京市现有水体中生长的各种水生植物特点的基础上,以北京市典型富营养化景观水体为研究对象,以水体去除有机物、脱氮、除磷等为目标,通过模型试验研究不同种类的水生植物在水体中的生长情况、污染物净化效率及景观效果,同时考虑植物取材方便等条件,优选出适合富营养化景观水体污染处理的水生植物,并进行优化搭配组合 [2-3]。研究结果可为富营养化景观水体高效修复水生植物的选择和提高系统污水处理效率提供依据。
  1 材料与方法
  1 1 试验材料
  选取北京市广泛分布的3种水生植物美人蕉、黄菖蒲、水葱作为研究对象。供试水生植物均从当地市场上采购,试验前先在试验用水中预培养10 d左右,从中挑选性状统一的健壮植株进行移栽、试验。试验用水取自北京市某景观水体,水质指标如表1所示。
  1 2 试验设计
  3种水生植物的培养采用150 L的塑料圆桶,水容积均为100 L。供试圆桶水面用有定植孔的塑料泡沫板作为栽培定植板,在定植孔中用海绵固定植物。每桶为1个重复,每种植物设3个重复,并设1组覆有泡沫板无植物的空白对照、无覆盖物无植物的空白对照。每次取样时以原水补充蒸发、蒸腾、采样所耗的水量。
  试验于2012年7月至2012年8月在北京建筑大学实验室内进行,持续时间为50 d,室内温度30~35 ℃。
  1 3 测定方法
  水样的pH值、溶氧量、水温指标每天现场监测1次,化学需氧量(chemical oxygen demand,COD)、总氮含量、总磷含量指标每3~5 d监测1次,各指标测定方法均参照相应国家标准方法。
  采用卷尺测量水生植物在种植前后的株高、根长,计算其生长量。
  2 结果与分析
  [BT2 3]2 1 植物生长情况
  在试验过程中,3种植物生长状况均良好,且生长速度快,生物量变化较大。特别是株高和根长较初期有明显增长:植株变高,并产生分蘖;根系上长出大量须根,整个根系在水中宽松展开。除此以外,每株植物也都有新叶长出,叶明显增长、增多。试验过程中各系统植物的生长量变化情况见表2。
  由表2可以看出,试验前后美人蕉、黄菖蒲、水葱各系统中植物的平均株高相对增长率分别为140 6%、154 4%、143 0%;最长根长的相对增长率分别为205 4%、333 7%、262 4%。可见各系统植物的生物量变化都较大,尤其以黄菖蒲最为突出,而且3种水生植物的最长根长的相对增长率都比平均株高的相对增长率高。这说明3种水生植物对于富营养化景观水水质有较好的适应能力,可生长出发达的根系,而水生植物根系则为水中污染降解微生物、微型动植物提供了良好的微生态环境 [4-6]。
  2 2 总体净化效果
  由表3可以看出,在本试验条件下,美人蕉、黄菖蒲、水葱水生植物系统均能有效净化受试水体的水质。相对于空白对照系统,3种植物浮床系统对水体氮、磷污染物均有较好的去除效果,而对COD的去除效果一般。美人蕉、黄菖蒲、水葱水生植物系统对总氮的去除率分别为48 8%、70 0%、30 0%,对NH 4-N的去除率分别81 9%、87 6%、60 0 %,对总磷的去除率分别为72 2%、43 4%、33 3%,对PO 3-4的去除率分别69 0%、42 9%、32 1%,对COD的去除率分别仅为302%、31 7%、29 5%。黄菖蒲水生植物系统对氮(包括总氮、NH 4-N)的去除率高于磷(包括总磷、PO4 3-),而美人蕉水生植物系统对于磷的去除率高于氮,对氮的去除效果稍差。因此在实际应用中,可将美人蕉、黄菖蒲这2种水生植物混合种植于同一系统内,以达到同时去除水体中氮、磷的效果 [7]   2 3 各水生植物系统对COD的去除效果
  由图1可以看出,各水生植物系统中COD均有不同程度的降低。试验初期(前5 d),各水生植物系统主要是通过沉淀作用去除COD,去除效果相当且去除速度较快;随着试验的进行,沉淀作用逐渐减弱,而系统中植物直根、须根不断生长,植物根系对COD的吸附、截留作用及根系附着的微生物对COD降解作用逐渐增强,各水生植物系统对COD去除效果有一定的提高,但COD去除效果提高的幅度与试验之初相比较差,降低趋势相对平缓。各水生植物系统对COD的去除效果相差不大,从大到小依次为黄菖蒲系统>美人蕉系统>水葱系统。
  黄菖蒲水生植物系统对COD的去除率最高,浓度由初始的28 1 mg/L下降到19 2 mg/L,对COD的去除率达317%;其次为美人蕉水生植物系统,试验结束时COD浓度为19 6 mg/L,对COD的去除率为30 2%;种植水葱的水生植物系统对COD的去除率稍差,为29 5%。
  在相同试验条件下,黄菖蒲水生植物系统对COD的去除效果最好,可能是由于系统植物的生物量较大,沉淀、过滤作用明显,而且根系附着的微生物种群数量较多,对COD的吸附、吸收及生物代谢降解过程较为突出 [8-9]。同时,空白对照系统的COD浓度也有一定程度的降低,去除率呈波动趋势,可能是空白水样系统中的有机污染物在自然状态下受到微生物的作用转化所致。
  2 4 各水生植物系统对总氮的去除效果
  本研究还比较了美人蕉、黄菖蒲、水葱、空白对照系统对试验水体中总氮的去除效果,结果见图2。由图2可以看出,试验初期,各水生植物系统总氮下降趋势较快; 而后总氮下降趋势变得平缓;试验结束时,各植物浮床系统对总氮的去除效果均优于空白对照系统。3种植物浮床系统中,以黄菖蒲系统的去除效果最佳,总氮浓度由开始17 0 mg/L降至5 1 mg/L, 去除率达到70%,美人蕉、水葱系统的总氮去除率分别为488%、30 0%,空白对照系统的总氮去除率仅为5 3%。因此,各系统对总氮的去除能力从强到弱依次为黄菖蒲>美人蕉>水葱>空白系统。
  水生植物系统对总氮的去除主要包括沉淀、吸附、挥发,植物的吸收、截留,以及微生物的降解作用 [10]。在最初阶段,总氮的去除主要依赖于沉淀和植物根系的吸附、截留作用,去除速率较快。随着试验的进行,沉淀作用减弱,根系吸附逐渐达到了饱和,总氮的去除主要依靠植物的吸收和根系微生物的降解作用。首先,将有机氮氧化为NH4 -N;其次,在有氧条件下,经硝化细菌的硝化作用将NH4 -N转化为NO3--N;最后,一部分氮被植物吸收,一部分在植物根部所在的底质周围厌氧条件下,由反硝化细菌将NO3--N反硝化为氮气 [11-12],这一系列过程较为缓慢,总氮的去除速率降低。
  试验条件相同时,黄菖蒲对总氮的去除效果最好,可能是由于黄菖蒲生长速率高,生长过程中对氮素的需求程度高、吸收能力强。
  2 5 各水生植物系统对总磷的去除效果
  本研究还探讨了美人蕉、黄菖蒲、水葱、空白对照系统对试验水体中总磷的去除效果。由图3可以看出,包括空白对照系统在内的4个系统中,总磷都有不同程度的降低,且各水生植物系统对总磷的去除效果明显优于空白对照系统。除美人蕉水生植物系统外,其他系统水体总磷降低的速率相对较为平缓,且呈现一定的波动。试验结束时,美人蕉系统水体的总磷浓度由0 90 mg/L降至0 25 mg/L,去除率达72 2%,而黄菖蒲、水葱系统内水体的总磷浓度分别由0 90 mg/L降至0 51、0 60 mg/L,去除率分别为43 3%、33 3%,可见美人蕉水生植物系统对总磷的去除效果最好。
  水体中总磷包括PO 3-4、酸式水解磷酸盐、可溶有机磷酸盐、单质磷等形态,植物、微生物对各种形态磷的同化、转化、去除途径不同。可溶性有机磷须通过微生物转化为无机磷,然后被植物同化;单质磷通过植物根的吸附和过滤被去除。试验水体中,总磷主要是以PO 3-4形式存在,各水生植物系统通过植物根区对磷的截留、吸附、吸收、生物降解等作用去除PO 3-4。
  在相同条件下,美人蕉水生植物系统对于总磷的去除效果较好,可能是因为美人蕉水生植物系统具有生物量大、对总磷的吸收吸附性能好、根区酶活性强,以及聚磷菌数量多等优势 [13-14]。因此,可用美人蕉水生植物系统来净化磷含量较高的景观水体。
  根据以上研究结果,从水生植物生物量变化,对COD、氮、磷污染物的去除效果和特性方面综合考虑,美人蕉、黄菖蒲水生植物系统对富营养化景观水体中氮、磷均有较好的去除效果。其中,黄菖蒲水生植物系统对氮的去除率高于磷,更适合于净化氮含量较高的景观水体;美人蕉水生植物系统对于磷的去除率高于氮,对氮的去除效果稍差,更适合净化磷含量较高的景观水体。在实际工程应用中,为同时取得较好的水体氮、磷去除效果,可将美人蕉、黄菖蒲2种水生植物混合种植应用 [15]。
  3 结论
  通过美人蕉、黄菖蒲、水葱水生植物系统的植物生长量和生长率变化、在水体中的适应性和对水体COD、总氮、总磷净化效果的研究,得出以下结论:(1)美人蕉、黄菖蒲、水葱水生植物系统的相对增长率变化从大到小依次为黄菖蒲>水葱>美人蕉;(2)美人蕉、黄菖蒲、水葱3种水生植物系统对景观水体中氮、磷等污染物有较好的去除效果,其中黄菖蒲系统对氮的去除效果最好,美人蕉系统对磷的去除效果最好;(3)美人蕉、黄菖蒲水生植物系统分别最适合净化磷含量、氮含量较高的景观水体。在实际应用中,为了同时达到较好的富营养化景观水体氮、磷的去除效果,可选择美人蕉与黄菖蒲混种的水生植物系统。
  参考文献:
  [1] 张振华,高 岩,郭俊尧,等 富营养化水体治理的实践与思考——以滇池水生植物生态修复实践为例[J] 生态与农村环境学报,2014,30(1):129-135   [2]江福英,陈 昕,罗安程 几种植物在模拟污水处理湿地中根际微生物功能群特征的研究[J] 农业环境科学学报,2010,29(4):764-768
  [3]陈丽丽,李秋华,高廷进,等 模拟生态浮床种植6种水生植物改善水质效果研究[J] 水生态学杂志,2012,33(4):78-83
  [4]胡智勇,陆开宏,梁晶晶 根际微生物在污染水体植物修复中的作用[J] 环境科学与技术,2010,33(5):75-80
  [5]Landman M J,Ling N Fish health changes in Lake Okaro,New Zealand:effects of nutrient remediation,season or eutrophication?[J] Hydrobiologia,2011,661(1):65-79
  [6]郑建初,盛 婧,张志勇,等 凤眼莲的生态功能及其利用[J] 江苏农业学报,2011,27(2):426-429
  [7]毛 昕,王丽红,张光生 不同生育期美人蕉-微生物修复富营养化水体[J] 环境工程学报,2013,7(12):4689-4696
  [8]傅明辉,郑李军,蒋丽花,等 富营养化水体中水生植物根际微生物群落研究[J] 环境科学与技术,2013,36(S2):133-137
  [9] 陆开宏,胡智勇,梁晶晶,等 富营养水体中2种水生植物的根际微生物群落特征[J] 中国环境科学,2010,30(11):1508-1515
  [10] 张志勇,郑建初,刘海琴,等 凤眼莲对不同程度富营养化水体氮磷的去除贡献研究[J] 中国生态农业学报,2010,18(1):152-157
  [11]Han P,Kumar P,Ong B L Remediation of nutrient-rich waters using the terrestrial plant,Pandanus amaryllifolius Roxb[J] Journal of Environmental Sciences-China,2014,26(2):404-414
  [12]李先会,朱建坤,施练东,等 富营养化水体细菌去除氮磷能力研究[J] 环境科学与技术,2009,32(4):28-32
  [13]Stow C A,Dyble J,Kashian D R,et al Phosphorus targets and eutrophication objectives in Saginaw Bay:A 35 year assessment[J] Journal of Great Lakes Research,2014,40(1):4-10
  [14]李淑英,周元清,胡 承,等 水生植物组合后根际微生物及水净化研究[J] 环境科学与技术,2010,33(3):148-153
  [15]白晓琴,赵 颖,崔 雪,等 几种植物在治理富营养化水体中的作用分析[J] 天津化工,2013,27(5):13-16
其他文献
摘要: 利用近10年来江苏省淮北地区主要推广的13个小麦品种,针对影响小麦产量的单位面积有效穗数、穗粒数、千粒质量产量3要素,通过方差分析、相关分析和通径分析,探讨产量3要素之间的相互关系及其对产量的影响。方差分析结果表明,不同小麦品种的产量及其产量构成因素存在显著性差异。产量较高的小麦品种为矮抗58、连麦6号、淮麦20、济麦22,较低的小麦品种为徐麦33、徐麦30;单位面积有效穗数较高的小麦品种
“晞”字的释义很多,它的本意是指向往,希求,仰慕。在汉语词典中有两个意思,一是“干,干燥”——“晨露未晞”;另一个是“破晓”——“东方未晞”。  就像是你,是信仰,是钦慕,是希望;身着白衣的样子,是天使。  “白晞希”这个称呼,在他们看来是很奇怪的。  不过,或许这更贴近于你和我之間的关系。1  是否每个人的青春里都会出现一个能惊艳时光的人,我不知道,可我的青春里,的确有这样一个人。  “女汉子”
看《小别离》的时候,我还是个中学生,还有一大堆亲朋好友跟我妈说:“里面那一家跟你家一模一样。”之后是《小欢喜》。到了《小舍得》,我已经懂得,看这种剧是一点儿用都没有了!  概括下剧情,就是两个有孩子的家庭在这个内卷时代下,努力养鸡娃的故事。至于两个家庭的联系,就是欢欢和超超的妈妈南俪,是张国立饰演的老爷爷南建龙和前妻生的女儿,颜子悠的妈妈田雨岚,是南建龙现任跟前夫的女儿。一点儿用也没有  顿号:现
雨果曾说:凡是嫉妒的人都很残酷。观看《西西里的美丽传说》时,女主玛莲娜的遭遇刚好验证了这句话。这部电影讲的是二战期间生活在西西里岛上的美人——玛莲娜的故事。玛莲娜过分美丽,每次出门都使得少年追逐围观,女人心生嫉妒。嫉妒的心理催生了谣言的蔓延,女人们甚至把她告上法庭,这成了玛莲娜走向堕落的开始。但谁又能说那些因嫉妒散布谣言的人不曾感到愧疚呢?  你也曾有过嫉妒心理吗?你身边有着怎样的有关“嫉妒”的故
我原本以为许多特殊而别扭的矛盾只在我这个个体身上出现,比如生活里最讨厌做重复机械的劳动,但在选择工作时,又会不由自主地想要挑选最模式化的一份以规避繁难;比如忙时每天期盼假期,而一旦闲下来又觉得没什么事好做,反而不由自主地想让时间过得快点儿;比如一些不合时宜的口是心非,一些在保守了又保守的事情上莫名其妙出现的冲冲动动。我以为我之所以是我,是因为我有这些一言难尽的特点,只是后来我发现,其实人之所以为人
“重新认识一下,西班牙语风华正茂任逸帆。”  电视剧《一起同过窗》,让我对大学生活多了几分希冀,同时剧中任逸帆的这句话更是让我初识西班牙语,并让我对西班牙语产生了浓厚兴趣。最终选择西班牙语是因为我的英语老师后来对我说:“你英语这么好,以后大学还可以选西班牙语,有好的英语基础会觉得西语很简单的。”  我因为“一剧一句”误打误撞入了西班牙语专业。幸好英语老师说的是大实话,一众新生苗苗里,果然英语基础好
摘要:以高淳区固花食用菌专业合作社为例,分析双孢蘑菇工厂化栽培低产的形成因素。结合试验研究,提出培养料质量、覆土材料的优劣及栽培环境管理是影响双孢蘑菇产量的主要因素;并对固花食用菌专业合作社的双孢蘑菇工厂化生产提出了改进建议,以供相关企业参考。  关键词:双孢蘑菇;工厂化;低产因素;培养料;覆土材料;改进建议  中图分类号: S646.1 10.4 文献标志码:A 文章编号:1002-1302(2
订了去莲花山滑雪的旅行社,不一会儿就收到了导游的短信,約定第二天早上8:00到达集合点,带着身份证。  到了集合点下车的那一瞬间我突然想起因为怕不好经管就把钱包从包里扔出去了,身份证还在钱包里呢!没有身份证不会影响进入景区吧?立刻给导游打了电话,导游说身份证是用来保险理赔的,如果在滑雪场受伤的话需要现场登记。我说那好,那我就放心了。内心OS:我当然不会摔伤啊!其实倒不是我对我的滑雪技术多有自信,而
袁一湛,本名袁千益。喜好热闹且有趣的人和事,哪儿有好玩儿的就往哪儿蹿,日常为“一日看尽长安花”的美好日子而努力奋斗。  人人都道少年好,我道少年皆是宝。  万花丛中过,我独爱这几位少年。  “鄙人不在江湖,可江湖总有鄙人的传说。”  我是袁一湛,拥最飒的少年,写最野的行文,欧耶!  泡泡是我们班最出色的花痴女,长得一般,说起帅哥来却如数家珍。  刚开学那会儿,我还正儿八经地寻思着课表安排,她已经曲
摘要: 以草莓四季品种为试材,自然条件下,研究不同节位匍匐茎子苗叶片的净光合速率、叶绿素荧光参数以及光合色素含量的差异。结果表明,同一条匍匐茎第1节位子苗相应参数值明显高于第2节位;同节位第1条匍匐茎参数值高于第2条匍匐茎。不同节位匍匐茎子苗净光合速率差异显著,以第1条匍匐茎第1节位最大,其各项叶绿素荧光参数值(Fv/Fm、qP、NPQ、ETR)也较高,而且较稳定。不同节位匍匐茎子苗叶绿素a含量差