论文部分内容阅读
研究了两类特殊三阶矩阵环的左Morphic性质.具体地,设R是环,令L(R)=a11 0 0a21 a22 a230 0 a33|a11,a21,a22,a23,a33∈R和O(R)=a 0 0a21 a a230 0a|a,a21,a23∈R.证得:(1)L(R)和O(R)都不是左Morphic的;(2)当R是唯一Morphic环且R∝R是左Morphic的,O(R)中主对角线为非零元的元素是左Morphic元.