论文部分内容阅读
文章主要根据机器学习算法(随机森林算法和极端梯度提升算法)和遥感水深反演的原理,利用Sentinel_2多光谱卫星数据和无人船实测水深数据,对内陆水体——梅州水库建立了随机森林(RF)、极端梯度提升(XGBoost)和支持向量机(SVM)水深反演模型,并对反演结果进行对比分析。结果表明:1) RF的训练精度为97%,测试精度为0.80;XGBoost模型的训练精度为97%,测试精度为0.79;SVM的训练精度为90%,测试精度为0.78。说明了在水深预测方面RF模型和XGBoost模型比SVM模型表