论文部分内容阅读
针对大量程高精度传感器不能一次完成标定实验的情况,提出一种将优化灰色GM(1,1)模型与BP神经网络相结合来预测分段标定过程中特征值缺失的方法,从而实现传感器的分段标定。首先,根据实验数据建立传统灰色GM(1,1)模型,对待标定传感器和标准传感器的测量值进行缺失数据的预测;然后,为弱化传统灰色GM(1,1)模型序列变化的幅度,提高模型的预测精度,利用中心逼近的思想对传统的GM(1,1)模型进行优化;最后,利用BP神经网络对优化的灰色GM(1,1)残差序列进行修正,以较高的精度实现对分段标定过程中缺失