论文部分内容阅读
遥感图像目标检测能为军事和民用领域提供重要的可利用信息,成为近年来的研究热点。针对现有目标检测技术不能兼顾检测速度和精度的问题,本文对Faster R-CNN做了优化:将轻量化的深度可分离残差网络作为Faster R-CNN的基础网络,降低基础网络模型的参数数量;将基础网络中的多层卷积特征经局部响应归一化后进行融合,增强目标特征信息的完备性,改善小目标易漏检的问题;联合softmax损失函数和中心损失函数训练网络模型,增加类别之间的差异性,缩小类内变化,使网络模型能学习到更具差异性的目标特征。在VE