论文部分内容阅读
针对点云配准算法对初始位置敏感且收敛速度慢的问题,提出一种基于几何特征由粗到细点云配准算法。在粗配准阶段,通过投影法提取源点云和目标点云各4个轮廓点,然后利用曲率特征和轮廓点之间的距离寻找稳健的特征点对,计算得到初始刚性变换参数;细配准阶段,计算点云法向量及法向量夹角,以法向量为特征进行特征匹配,然后使用法向量夹角来启发搜索,使迭代最近点(iterative closest points, ICP)算法快速收敛。实验结果表明,所提出的由粗到细的配准算法鲁棒性强,具有较高的精度和速度。