竞相开放,百花争艳

来源 :科学与财富 | 被引量 : 0次 | 上传用户:zlh888617
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:数学开放题的解答过程需要创新思维的参与,而且开放题往往起点低,不同层次的学生可以从不同的切入点进行考虑与回答,这也大大拓展了学生发展的空间所以开放题既有利于培养学生的合作探究能力,还为学生思维质量的提高提供了条件。作为教师,既需要设计好开放题,又需要有效把握开放题呈现的时机,让学生以一句探索者与研究者的心态去体验数学家研究数学的伟大过程,深刻领会数学的规律与本质,领悟数学思想的作用,为今后的发展打下扎实的基础。
  关键词:数学开放题;低年级;设计;运用
  数学开放题的最大特点是答案并不唯一,解答过程需要创新思维的参与,而且开放题往往起点低,不同层次的学生可以从不同的切入点进行考虑与回答,这也大大拓展了学生发展的空间,有利于学生形成良好的思维品质。开放题一般只给出条件,解题思路是从条件出发通过一系列的观察、猜想、试验、验证、归纳,调动解题需要的知识技能、思想方法进行顺向推导,最终得出结论。
  但是对于开放题呈现的时机大有讲究,笔者曾对两个平行班在不同教学时机呈现同一道题,但学生参与与回答的情况却大相径庭,这时由于学生的学习基础不同,因为没的掌握好时机,导致其中一个班的学生茫然不知所措,以后我根据平时教学的需要,把开放题大都放在复习巩固的环节,尽量让学生全面思考问题,答得尽量完整,当然开放题也可以有激活课堂,调节氛围的作用。具体对于开放题的设计与运用,笔者以为可以从以下几种形式入手考虑:
  一、全面探究式开放,夯实基础
  例:一个长方形的周长是12厘米(长与宽都是整厘米数),那么他的面积是多少平方厘米?
  这道题如果出现在学生还没有学习系统完整的长方形周长与面积的概念前,他们可能会周长分成一条长与一条宽,解法就会有“11×1、10×2、9×3、8×4=32、7×5=35、,6×6=36”这六种,所以这类题目不能过早地出现,只有让学生完全理解了“长方形的周长包括两条宽与两条长”,以及“求一个长方形的面积需要知道一条长与一条宽”这两个基本知识点,才能获得可靠的解题策略:先把周长的一半分成一条长与宽,再运用长方形的面积公式进行计算。这样具体的计算过程就是:
  ①因为12厘米包括了两条长与两长宽,所以一条长与宽之和是:12÷2=6(厘米)②如果5+1=6(厘米),那么5×1=5(平方厘米);如果2+4=6(厘米),那么2×4=8(平方厘米);如果3+3=6(厘米),那么3×3=9(平方厘米)。
  俗话说:“基础不牢,地动山摇”,学生学习的过程是一个循序渐进的过程,只有根基扎實才能进一步深入学习。在帮助学生进行探究这类全面探究型的开放题时,学才一定要掌握扎实的相差基础知识,经过灵活运用,才能达到灵活自如的境地。
  二、调节氛围式开放,激活思路
  例:一个长方形,老师如果现在把它剪去一个角,还剩几个角?
  分析:大多数同学一开始认为:老师今年怎么了,一个长方形,剪去一个角,不就是3个角吗?其实,这题思考的关键点在于通过实际操作,或者用笔画一画,体验有可能增加角的情形,也就是说学生要学会区分“生活中的角”与“图形中的角”的不同。正确解答为:如图,有三种可能:3个角、4个角、5个角。
  小学生的年龄特点以及数学学习过程的特点导致思维倦怠是不可避免的。开放题具有一定的挑战性,它能降低思维倦怠和思维定势带来的负面影响。笔者认为,这样的题目很适合在学生思维倦怠之前出现,既可以巩固所学的数学知识,也可以进一步激活学生的思维,将数学知识和生活实践相结合,让学生学好知识,但不学死知识,适当地跳起来摘果子。
  三、反向分析式开放,冷静作答
  这类开放题已经有现成的结论,但是没有给出条件或者条件不完备。它的解题过程是通过现有的结论反向探究其结论成立的条件。解题时可以把符合要求的条件逐一分析列出,推导出规律;也可以用分析的思想, 追寻其成立的充分条件。
  例:( )+( )=6,( )里多少?
  学生有“6的分成”以及“10以内加减法”的基础,答案是脱口而出:2+ 4=5、4+2=5、5+1=6……但是排列无序,尽管都正确但没有一个可行的顺序,教师如果一味放任自流,就无法提升学生的思维。于是我先给学生泼了一瓢冷水:可是你们说的太乱了,这样的回答显然是答得不全面的,你有办法做到答案一个不漏吗?”
  众生:这……
  生1:老师,我可以先写一个1+5=6,然后写第二个2+4=6,再写3+3=6,4+2=6,5+1=6
  师:你的方法是什么呢?
  生1:也就是第一个加数分别写1、2、3、4、5,这样从小到大,然后确定第二个加数。
  师:对,这就有序思考,可是大家有没有发现他有没有写全呢?
  生2:老师,他忘记了0+6=6。
  生3:老师,还有6+0=6.
  师:那么这个题目的答案可以有几种?
  师:7种。
  师:不错,那么如果老师如果把题目换成( )+( )=10,你能写出几种答案呢?
  生:(思考后)11种。
  这里,教师因势利导,帮助学生发现这类题的解题规律,使学生不但知道个别答案,还能对所有答案进行有效排序。这道题非常有趣味性,思考的层次性也极为明显,探究有首极高的价值,思维的训练也非常到位。这类开放题看起来答案很明显,但是若要抓住本质、找全答案绝非易事。遇到这样的情况,学生会很自然地情绪激昂,不能自抑。教者此时此刻需保持十二分的冷静,因为这样的题目要找全答案,必须深谙其中的规律,只有掌握其中的规律才有助于学生能力水平的提升。
  数学是思维的体操,它在培养人的思维能力与创新能力上有着重要的作用,数学开放题因为没有固定的解答方法,需要学生善于联想,敢于创新,灵活运用数学基本知识,生成创新型的解题方法与策略。所以开放题既有利于培养学生的合作探究能力,还为学生思维质量的提高提供了条件。作为教师,既需要设计好开放题,又需要有效把握开放题呈现的时机,让学生以一句探索者与研究者的心态去体验数学家研究数学的伟大过程,深刻领会数学的规律与本质,领悟数学思想的作用,为今后的发展打下扎实的基础。
  参考文献:
  [1]马丽.数学开放题教学与学生思维品质的培养[J].新课程学习(上).2013(10)
  [2]李海东.小学数学开放题教学中的师生角色谈[J].江苏教育. 2015(05)
其他文献
摘要:回形纹发源于中国,其形式多样,变化多端,在古代通常用于陶瓷或青铜器的装饰。因其寓意吉祥,所以成为我国历史上被应用最广泛、最频繁的装饰纹样之一。传承至今,回形纹的样式和风格发生了很大的变化,同时也被应用到更多的领域中。本文阐述了回形纹在坭兴陶装饰中的应用。  关键词:回形纹;坭兴陶装饰;应用  一、坭兴陶简介  坭兴陶产于我国广西壮族自治区钦州市,钦州坭兴陶作品名列我国四大名陶,其产品更是远销
期刊
摘要:心理学并不像我们想象中的“高不可攀”,在我们生活的方方面面都可以运用到心理学知识,教育工作者在取得教师资格从业证书之前,就已经系统的学习过教育心理学的相关知识内容,只要在日常的工作和生活中多加留意,积极的研究心理学知识与教育工作相结合的策略,就可以起到良好的教育效果。小学阶段是身心发展的关键时期,教师要运用心理学知识解决学生普遍存在的各种问题,本文将结合心理学中的法则对小学教育进行研究和分析
期刊
摘要:坭兴陶是广西特有的民族文化产品,京族特色元素由于其具有较强的表现能力,充满魅力的艺术化语言在艺术届占有一席之地,形成了独属于自己的风格和文化,表现了广西京族人在临海捕鱼的生產、生活方式。在现如今,随着科学技术水平不断提升,京族的特色元素也有了新的时代表现力。在坭兴陶装饰设计的过程当中,京族元素能够提供较有表现力的特殊造型,也能够通过京族元素展示中国文化的底蕴和特色,在坭兴陶装饰设计当中得到了
期刊
摘要:NTC热敏电阻在电子领域的应用十分广泛,且具有价格低廉的特点,但是在实际的操作中,由于热敏电阻属于非线性的原材料,因此必须进行线性化的处理才能使用,本文就从热敏电阻的特点、热敏电阻的线性化设计、在使用热敏电阻过程中需要注意的问题进行具体的分析。  关键词:NTC热敏电阻;线性化;应用  前言  相对于集成温度传感器来说,NTC热敏电阻的温度测量范围更宽泛,据统计,使用热敏电阻进行测温,最高温
期刊
摘要:电力系统的规划设计对于电厂的正常运作而言,具有非常重要的意义。电力系统的规划设计工作在一定程度上影响着电厂的正常运行,如果能够正确利用电力系统规划来为电厂进行相应的工作依靠的话,那么电厂的电力输送水平将全面提升。切实有效地利用电力系统规划设计可以为电力工程设计提供许多技术支撑,以此来保障用户在用电的过程中不会遇到困扰。本文就以电力系统规划设计要遵循的原则进行了简单的说明,并分析了电力规划设计
期刊
摘要:企业家,是经济活动的重要主体,是财富积累和价值创造过程中最具生产力、最为积极的因素,而“企业家精神”是企业进化的第一推动力,也是经济充满生机活力的动力源泉。当前,正是社会主义市场经济蓬勃发展的时候,培育“企业家精神”,激发企业家创新活力,对实体经济的发展以及市场经济的发展有着重大作用。  关键词:企业家精神;培育;创新  自改革开放以来,企业如雨后春笋般涌现,然而随着经济的迅速发展,市场竞争
期刊
摘要:近年来,随着国家逐步加强对环境的治理力度,出台一系列环保法规。在此大背景下,各危废行业不仅需要投入更多成本来处置污染物并达标排放,同时还将引入先进的处理技术。医疗废物高温干热灭菌处理技术作为国家环保部公示《2017年国家先进污染防治技术目录(固体废物处理处置领域)》涉及的推广新技术之一[1],本文将对高温干热灭菌法的工艺原理、设备参数、灭菌效果及技术特点与现阶段国内医废处置方式进行对比,在处
期刊
摘要:两种重要极限作为微积分的重要内容,是微积分中极限求解的重要组成部分,该内容抽象,题目变化形式多样,灵活度较高,在学习过程难度较大。在具体的题目求解过程中,应在掌握定义的基础上,灵活分析问题,把握重点,熟练应用公式进行计算。  关键词:函数;极限;分析  1第一个重要极限  定义1: 或 .  分析:当x→0时,sinx→0,两者的比值的极限在x→0时为0,即为等价无穷小。  注:计算过程中s
期刊
随着城市化进程的推进,城市建设呈现了多样化、复杂化的趋势。这在客观上催生了测绘新技术的诞生。一些以现代信息技术发展为基础的信息化测绘工具和手段也不断地应用于现代城市的各项工程建设中,其中包括倾斜摄影测量技术。  一、城市建设中的倾斜摄影测量及其应用的意义  (一)摄影测量在实际应用中的发展  传统的摄影测量有一个明显的缺陷,那就是只能为人们提供正面的垂直角度的摄影像,不能进行多角度地观察物象,因而
期刊
摘要:协同育人资源整合,是实现协同育人资源规模化和质量化发展的必由之路,有利于构建现代化职业体系和培养应用型人才,服务区域经济发展及促进经济结构优化升级。在民办高校党建工作中引入协同育人模式,分析其现实意义,从而找到协同育人模式在民办高校党建工作中的新举措。  关键词:协同育人;民办高校;党建  全面深化改革的形势下,高等教育也迎来了新一轮的革命性改革。为了适应社会对高等教育发展的要求以及对一些复
期刊