论文部分内容阅读
摘要 真核生物中组蛋白翻译后共价修饰直接影响染色质空间结构变化,调控相关基因表达,在植物胁迫应答过程中起重要作用。水杨酸(salicylic acid,SA)作为植物中关键信号分子,诱导多种病毒、真菌及细菌病害抗性。本文简要介绍了植物细胞对病原菌的感知、转导信号产生与防御系统激活机制,着重阐述了组蛋白甲基化、乙酰化、SUMO化修饰、组蛋白变体H2A.Z等如何参与调控水杨酸转导途径应答基因的转录表达。
关键词 组蛋白修饰; 病原菌; SA信号
中图分类号: S 432.2
文献标识码: A
DOI: 10.16688/j.zwbh.2018004
Abstract The gene expression in eukaryotic organisms is regulated by the change of spatial chromatin organization, which plays a very important role in the defense response of plant during the infection by plant pathogens. Salicylic acid acts as a key signal molecule,indirectly inducing systemic resistance against viral,fungal and bacterial attack. In this review,we simply introduced the mechanisms of pathogen perception,signal transduction and stimulation of plant defense response,and then focused on the posttranslational modifications of histone,histone variant and their functions in the expression of salicylic acidrelated genes.
Key words histone modification; plant pathogen; salicylic acid signal
高等植物自然生长过程中会受到细菌、真菌等植物病原体的侵染刺激,这种刺激会诱导以水杨酸(salicylic acid,SA)、茉莉酸乙烯(jasmonic acidethylene,JA/ET)信号途径为主的关键调控网络相关应答基因的活化,使植物能够抵御外部环境对其生长发育产生的不良影响。相对于动物体能通过特殊的内分泌腺产生激素,植物细胞亦能自主合成植物内源激素。SA是植物体内广泛存在的一种酚类物质,其作为诱导因子诱导植物对病毒、真菌及细菌病害产生抗性,对胁迫条件相关代谢过程起极其重要的调控作用。所有的植物活细胞均具备感知病原体侵染的潜能,最终建立始于局部病原体侵染信号的广谱系统性防御状态,即系统获得抗性(systemic acquired resistance,SAR)。在病原体侵染胁迫下,植物体迅速感知病害,通过一系列转录因子及级联信号,在细胞核内融合胁迫信号刺激,启动SA合成积累,调控SA应答基因转录过程。近年来,组蛋白修饰、DNA甲基化等表观遗传修饰参与调控植物胁迫应答方面的研究越来越深入,组蛋白翻译后修饰包含乙酰化、甲基化、磷酸化、泛素化、ADP核糖基化等多种方式,其中乙酰化、甲基化两种修饰模式研究得较多,组蛋白的修饰状态对于维持染色质结构和调控基因转录活性具有关键性作用。本文重点对植物组蛋白的主要修饰如何参与调控SA信号转导途径进行综述, 同时对该领域未来的重点研究方向进行讨论与展望。
1 植物天然防御应答
1.1 感知病原菌胁迫
基础抗性(又称非寄主抗性)是植物天然免疫性的一般表现形式,在宿主细胞内存在少量的模式识别受体(pattern recognition receptors,PRRs),PRRs特异性识别微生物-病原相关分子模式(microbial or pathogen associated molecular patterns,MAMPs/PAMPs),包括特定的蛋白、 脂多糖类或者细胞壁成分,激活MAMP/PAMP触发的植物免疫性(MAMP/PAMPtriggered plant immunity,MTI/PTI)。病原菌为抑制或克服MTI/PTI,增强效应蛋白进入宿主细胞的能力,形成一种效应蛋白诱导的感病性(effectortriggered susceptibility,ETS)。植物特异的抗性R基因识别相应avr基因效应因子后,激活ETI(effectortriggered immunity),启动主要防御基因表达诱导相关抗性[1],ETI通常在病原菌侵染部位引发超敏反应(hypersensitive response,HR),抑制侵染位点病原菌的生长,再由局部的PTI和ETI激发植物系统获得性抗性(SAR),提升植物远端组织乃至整株的防御能力[2-3]。
1.2 胁迫信号激发防御系统
致病信号通常在细胞表面或细胞质内被感知,信号传导至细胞核,继而引发相关基因转录。感知病菌侵染后,植物防御系统建立相关的早期事件涉及离子流、活性氧产生、磷酸化级联信号[4]。进而引起SA、JA、ET等植物激素浓度变化,细胞核感知识别转导途径次级信号,启动防御基因的转录表达[5]。
目前已鉴定出许多参与植物防御信号转导的重要因子[6]。病原菌侵染植物组织后,EDS1与PAD4、RPS4及病菌效应蛋白AvrRps4 形成独特的蛋白复合体,复合体穿梭于细胞质和细胞核之间,EDS1进一步与转录因子发生互作,调控SA应答基因进行转录表达[7-8]。病菌胁迫下,细胞核核质R蛋白SNC1(suppressor ofnpr1-1,constitutive1)与转录共抑制子TPR1(TOPLESS-related1)协同作用抑制DND1、DND2及其他负调节因子的表达[9]。NPR1 (non-expresser ofPR1)是SA介导的植物防御网络的关键调控因子,SA缺乏,NPR1在细胞质内形成均一型低聚合物;病原菌侵染刺激后,SA積累促进NPR1低聚合物转变为单聚体形态,单聚体NPR1与TGA转录因子作用,重新定位至细胞核,激活PR(pathogenesis-related)基因的表达[10]。此外,核质转运MOS1、MOS3、MOS6和 MOS7基因突变影响植物防御响应,MOS7-1等位基因突变抑制细胞核内EDS1、NPR1和SNC1合成表达[11],MOS1基因调控核内循环与免疫响应等生理过程,MOS1和TCP蛋白具有直接的物理相互作用,并与R类基因SNC1启动子结合,调控其表达,进而调节免疫应答[12]。植物细胞内大分子迁移、核内调节蛋白重新定位引起防御应答基因转录水平的变化,在植物防御分子调控网络中起关键作用。 同样JA信号也是在细胞核内被感知,缺乏JA的活化形式JA-ILEJA时,JAZ蛋白在核内与NINJA结合,募集共抑制子TOPLESS,抑制MYC2等JA应答转录因子的活性。胁迫条件下,植物体内大量合成JA,并在JAR1的催化下形成JA-Ile,JA-Ile促进COI1-JAZ共受体结合SCFCOI1形成SCFCOI1E3泛素连接酶复合体,引起多泛素化修饰和泛素化蛋白酶体途径介导的JAZ抑制子降解。JAZ降解减弱对目标转录因子活性的抑制,促进JA途径下游应答基因PDF1.2a、THI2.1、VSP2 的表达[13]。以上核内生物学过程在SA、JA等信号感知和防御相关基因的基础转录具有调节作用,但核质转运和染色质修饰如何建立直接或间接作用联系仍不明确。
2 组蛋白修饰改变染色质构象调控转录
真核细胞中染色质的结构与动态高度依赖于核小体定位和染色质的空间结构。通常紧密的异染色质区的基因处于沉默状态,而位于松散的常染色质区基因则处于转录激活状态。染色质结构的持续、瞬时变化可以通过组蛋白翻译后修饰(posttranslational histone modifications,PTMs)、组蛋白变体置换和依赖于ATP的染色质重塑等不同机制完成。
组蛋白尾部从球状核小体核心突出,可发生乙酰化、甲基化、磷酸化、泛素化、苏素化、羰基化和糖基化等多种可逆的PTMs[14],直接调节染色质结构或招募特定的效应子或组蛋白修饰识别蛋白,效应子或识别蛋白与组蛋白修饰的结合方式决定其复合体的调节功能[15]。通常组蛋白乙酰化与转录激活相关,去乙酰化与转录抑制相关。此外,组蛋白甲基化或泛素化也能激活或抑制转錄。拟南芥全基因组分析研究表明组蛋白H3K4和H3K36三甲基化和H2B 单泛素化(H2Bub)在表达基因区富集,而H3K27三甲基化与基因的表达抑制相关,H3K9二甲基化和H4K20单甲基化在组成型异染色质和转座子沉默区富集[16-17]。
模式植物拟南芥中已发现37种SET域蛋白,部分具有组蛋白甲基化转移酶活性[18],还有4种LSD1-like蛋白和21种含JmiC结构域的蛋白具有组蛋白去甲基化酶活性[19]。组蛋白H2B单泛素化参与调控植物多种发育过程,与基因激活有关,它的沉积需要E2泛素连接酶UBC1 与UBC2,和E3单泛素连接酶HUB1与 HUB2[20]。此外,拟南芥中已发现超过40种基因编码假定的依赖于ATP的染色质重塑因子,基于ATP酶亚基至少可以分为五类: SWI/SNF、ISWI、NURD/Mi-2/CHD、INO80、SWR1,依赖于ATP的染色质重塑酶利用ATP水解的能量使组蛋白和DNA结合去稳定化,降解组蛋白八聚体,催化特异组蛋白变体和DNA链的结合,重塑染色质结构[21]。组蛋白修饰和依赖ATP的染色质重塑相关酶在植物胁迫应答过程中起极其重要的调控作用。
3 组蛋白修饰参与植物SA信号转导途径调控
3.1 组蛋白乙酰化和甲基化
3.1.1 抑制SA应答基因的基础转录
SA在植物系统获得抗性(SAR)建立过程中扮演非常重要的信号分子的角色。通常植物体未受外部病原菌侵染,组蛋白去乙酰化酶SRT2抑制SA生物合成相关基因PAD4,EDS5和SID2的表达;而在番茄细菌性叶斑病病菌Pseudomonas syringaepv.tomato(Pst DC3000)侵染后,SRT2基因的表达受到抑制,增加SA的生物合成量,激发防御应答基因的起始转录表达[22]。许多SA途径应答基因具有W-BOX顺式调控元件,WRKYs转录因子能与此特征序列结合,拟南芥中研究发现WRKY18、WRKY40以及TGA2、SNI1等转录因子参与调节SA途径下游应答基因的基础转录[23-26]。WRKYs转录因子同样也调节PTI和ETI激活途径的下游响应基因的转录[27]。TGA2通过结合基因启动子as-1(activating-like sequence 1)顺式调控元件抑制受SA诱导的后期应答基因的基础转录[24,28-29]。在sni1和tga双突变体中,PR1和PR2基因的基础转录水平强于sni1和tga单突变体,说明TGA2抑制子与SNI1之间具有协同作用效应[24]。SNI1在植物体内组成型低水平表达且不受SA诱导[30],SNI1促进染色质修饰酶被募集至PR1基因启动子结合位点,减少组蛋白H3乙酰化和组蛋白H3K4二甲基化水平,维持染色质结构“紧闭”状态[31],敲除SNI1则引起PR1基因启动子组蛋白H3乙酰化和H3K4二甲基化水平升高[25]。
组蛋白去乙酰化酶HDA19活性也直接影响PR1、PR4、PR5等许多SA途径下游应答基因的基础表达水平[32]。 hda19突变体中PR1、PR4、PR5基因表达水平增加两倍,HDA19促进组蛋白H3K9、H3K27、H4K5、H4K8位点去乙酰化,调控染色质特异位点的基因沉默[32-33],在病原体侵染后,HDA19与多种蛋白形成复合体,通过其去乙酰酶活性抑制防御反应的负调控因子,进而激活防御反应。HDA19是否在SNI1抑制转录位点发生去乙酰化作用尚缺乏直接试验证据。
组蛋白乙酰转移酶ATX1是植物抵御病原菌Pst DC3000侵染的关键因子,ATX1正调控WRKY70转录因子的表达,WRKY70编码一个调控SA和JA信号转导网络交叉节点的关键转录因子,受SA诱导,并且参与间接调控JA诱导基因THI1.2的表达[34-35]。wrky70突变不影响PR1基因转录,表明ATX1通过一种不依赖于WRKY70的调控机制影响PR1基因的基础转录表达[36]。
组蛋白甲基转移酶SDG8能二甲基化和三甲基化H3K36位点[37],是受PstDC3000侵染激发的植物主动防御关键因子[38]。SDG8维持RPM1、LAZ5等R基因的基础表达水平,但对RPS2和RPS4没有影响。BTH处理或接种PstDC3000可诱导野生型植株中LAZ5的表达,而不能诱导sdg8突变体中LAZ5的表达。染色质免疫共沉淀(ChIP)研究处于休眠状态的拟南芥sdg8突变体,发现LAZ5染色质上H3K36三甲基化水平显著下降,而野生型植株LAZ5染色质区H3K36三甲基化水平并未发生显著上升[38]。因此,SDG8可能是通过使特定R基因的染色质H3K36位点甲基化建立一个“默许”(permissive)染色质结构状态,保持R基因的基础表达,SDG8建立的这种“默许”状态可能是某些特异R基因被诱导转录所必需的。最近研究表明sdg8突变体对丁香假单胞菌的侵染比野生型更为敏感[39]。 3.1.2 诱导SA应答基因的表达
植物中SA合成受苯丙烷代谢途径(phenylpropanoid metabolic pathway)的关键调控[40],该途径由PTI信号介导激活,同时诱导WRKY和MYB类转录因子产生,调控SA途径早期关键应答基因EDS1、PAD3、ICS1和NPR1的表达[41-42]。EDS1和PAD4是PTI激发SA积累的关键基因[43],EDS1启动子区被一种Ca2 /钙调蛋白结合转录因子SR1专一性结合后,表达受抑制,SR1突变SA水平增加,对丁香假单胞菌等病原体的抵抗力增强[44],SR1转录因子通过锚蛋白重复序列(ankyrin repeats)与HDAC2互作[45],在EDS1基因去乙酰化修饰中起关键作用。
NPR1基因对植物系统获得抗性和诱导系统抗性的产生起关键调控作用,过量表达NPR1可提高植物抗病性。SA积累促使NPR1定位至细胞核内,并发生单聚体化[42,46]。NPR1单聚体依赖BTB/POZ结构域80~90位氨基酸残基及羧基端半胱氨酸Cys-521和Cys-529的氧化与TGA二聚体发生作用形成NPR1-TGA增强体[46],削弱SNI1和TGA2介导的转录抑制作用,促进SA转导途径后期应答基因的大量表达,NPR1激活也能促使TGA2与as-1顺式调控元件结合,促进基因表达[47]。SA大量积累诱导SA应答基因染色质区的空间构象发生变化,研究表明外源SA处理12~48 h能提高PR1基因启动子H3和H4乙酰化、H3K4二甲基化和三甲基化水平[25,48-49],且PR1基因启动子H3乙酰化以及SA应答基因H3去乙酰化依赖于NPR1[49],这说明激活后的NPR1募集HAT,同时抑制去乙酰化活性。NPR1可能参与调节部分SA转导途径早期NPR1依赖性和后期应答基因的H3乙酰化水平,进一步研究发现H3乙酰化和H3K4二甲基化水平提高与SNI1无关,SA类似物处理sni1突变型和野生型,H3乙酰化和H3K4二甲基化水平相当[25]。
SA处理24 h后或PTI激活后PR1基因染色质区H3K4二甲基化和三甲基化水平未发生改变,推测H3K4二甲基化和三甲基化标记在PR1基因受诱导表达前就可能存在于其启动子区和编码区[25,35],另有研究报道H3K4二甲基化水平升高[25],这种差异可能是由H3K4二甲基化和三甲基化水平的瞬时升高造成[50]。在水稻中研究则发现H3K4二甲基化处于低中水平,而H3K4三甲基化则处于高水平[51]。H3K4甲基化通过结构依赖性方式募集具有HAT活性的转录激活复合体或者具有HDAC活性的转录抑制复合物[50],已有甲基化模式研究认为H3K4甲基化不直接影响基因转录[52],推測H3K4甲基化可能作为沉默基因染色质区的组蛋白修饰标记或其他转录调控复合体的作用靶点。
NPR1激活的SA应答基因包含WRKY18、WRKY38、WRKY54、WRKY58、WRKY59、WRKY66、WRKY70等许多WRKYs[53]。WRKY18、WRKY38、WRKY58是负调控因子[53-54]。然而在NPR1下游,WRKY18却作为正调控因子参与SA诱导的包括PR1在内的后期应答基因的表达[53]。WRKY70的转录不仅受到NPR1调控而且需要ATX1介导的H3K4三甲基化[35]。H3K4三甲基化是一个与转录激活有关的组蛋白标记,ATX1正调控WRKY70的表达,病原菌侵染或SA处理后,PR1的大量表达需要ATX1参与但其不是甲基化修饰的靶位点,WRKY70上游应答基因不受ATX1调控,下游PR1基因的表达主要受转录因子WRKY70调控[35]。总而言之,NPR1激活促进SA转导途径应答基因组蛋白H3、H4乙酰化及H3K4二甲基化等。
3.1.3 抑制NPR1依赖性基因的表达
SA途径应答基因在SA积累或植物防御系统激活后被短暂诱导。拟南芥中研究发现NPR1、NPR3、NPR4三种蛋白均为SA的受体,NPR1执行转录共激活子功能,NPR3和NPR4功能类似于E3连接酶,促进NPR1蛋白降解。而最新研究表明NPR3和NPR4具备转录共抑制子功能,SA抑制NPR3和NPR4的活性,进而促进NPR3和NPR4下游防御响应相关调控因子的表达,NPR3和NPR4与TGA2、TGA5、TGA6协同抑制参与病原菌诱导的SA合成相关转录因子SARD1、WRKY70。在npr4-4D(npr4等位基因)功能获得型突变体中NPR4蛋白丧失结合SA的能力,组成型抑制SA诱导的防御应答基因表达,而npr1功能获得型突变体中NPR1同样失去SA结合能力,反而促进SA诱导的防御应答基因表达,进一步研究分析揭示NPR3和NPR4、NPR1彼此独立调控SA诱导的防御应答[55]。NIMINs(NIM1-interacting proteins)参与后期响应基因的表达抑制,NIMINs通过竞争性结合NPR1,降解NPR1-TGA 激活复合物,抑制基因的表达[56-59]。NIMINs具有EAR(ethylene-response-factor-associated amphiphilic repressor)基序,在水稻中研究发现该基序是基因活性抑制所必需的[58-59]。EAR基序在适配体蛋白AtSIN3和AtSAP18的协同作用下招募HDA19共抑制复合体,增强基因沉默[60]。这暗示NIMINs可能是通过招募HDA19共抑制复合体来竞争结合NPR1-TGA 绑定的启动子位点。转录因子WRKY18 和WRKY40 也具有EAR基序[61],推测两者可能也通过上述机制来调控SA转导途径应答基因的表达。WRKY38和WRKY62转录因子在植物防御系统调控中起转录激活子作用,植物受病原菌侵染1~3 d后,HDA19与WRKY38和WRKY62互作,激活未知负调控因子,增强PR1基因的表达,但过表达HDA19可以完全抑制WRKY38和WRKY62的激活子活性[54]。HDA19也能与转录因子WRKY38 和WRKY62的转录共抑制子TPR1互作[9]。 3.2 组蛋白置换介导的SA应答基因表达
研究表明组蛋白置换介导SA应答基因的表达,在拟南芥中组蛋白变异体H2A.Z基因hta9和hta11双突变体激发PR1等SA转导途径应答基因的表达[62]。组蛋白H2A的置换由SWR1复合物调控,拟南芥中SWR1功能丧失促进WRKY18、WRKY38、NIMIN1、ICS1、EDS5和PR的表达[62]。目前已建立的模式认为H2A.Z沉积平衡基因的表达抑制和转录激活需要其他因子协同[63]。
H2A.Z缺失抑制甲基化区域的基因表达活性,DNA甲基化转移酶MET1突变会导致甲基化受抑制,H2A.Z沉积加剧,SWR1复合物亚型PIE1突变,H2A.Z沉积也发生变化,进而引起全基因组发生超甲基化现象,表明H2A.Z具有保护DNA免受甲基化的作用,其缺失可促进植物借助DNA甲基化修饰调控机制改变染色质结构,沉默相关基因[64]。H2A.Z可直接参与调控SNI1、TGA2、HDA19等SA应答基因转录抑制因子来平衡基因表达,抑制因子位点组蛋白置换缺失降低其自身的表达水平,同时激活SA应答基因的表达。H2A.Z沉积可能具有标记短时间内被抑制或保持表达水平的SA转导应答基因的作用,SA积累后应答基因染色质区的H2A.Z水平升高[63]。推测H2A.Z可能在SAR过程中提供“转录记忆”。
非胁迫条件下SWR1突变导致SA信号转导途径EDS5、ICS1、WRKY38、WRKY18、NIMIN1、CRK6、ACD6、PR1等基因的表达受到抑制,并且增强了对Pst DC3000的抗性[62],这些抑制与H2A.Z丢失、组蛋白乙酰化和H3K4三甲基化减少有关[65-66]。其原因可能是SWR1-like复合体促进H2A.Z在SA转导途径上游的未知抑制因子位点沉积,间接调控防御应答基因的表达。拟南芥arp6突變体试验发现缺磷胁迫应答基因染色质区H2A.Z发生丢失,基因表达抑制被消除[67]。因此H2A.Z沉积可能影响基因激活或抑制。
3.3 SUMO蛋白参与SA转导途径的转录调控
SUMO(small ubiquitin-like modifier)以组蛋白、HDA19和WRKYs为保守底物与其他蛋白质的共价连接参与调控染色质修饰复合体的招募,进而影响SA途径应答基因染色质构象,拟南芥中研究发现SIZ1(SUMO E3连接酶)基因作用于PAD4 、NPR1的上游,其突变导致SA应答基因的组成型表达,在siz1和pad4双突变体中,PR1表达未被完全抑制[68],SIZ1抑制基因表达并不依赖PAD4,而是可能通过与SNI1、TGA2、SR1和WRKYs作用抑制SA应答基因的转录[69]。
SIZ1能降低组蛋白乙酰化水平,保持SA应答基因染色质结构的紧密状态,研究发现SIZ1同源物可介导组蛋白H2A、H2B、H3、H4的SUMO化并抑制相关基因转录[70-71],推测拟南芥中SIZ1可能也具有SUMO化组蛋白的功能,siz1突变体中上调基因可能是受组蛋白SUMO化修饰调控。在植物中乙酰化和SUMO化两种修饰互相竞争抑制,H2A的SUMO化抑制其乙酰化[71]。H2A的SUMO化或乙酰化是否在SA应答基因的转录调控方面发挥作用尚无直接实验证据。SIZ1还可通过其PHD结构域与具有BROMO结构域的GTE3发生作用,以GTE3为结合底物,SUMO修饰抑制GTE3与组蛋白H3乙酰化尾部多肽结合[72],由于BROMO结构域通常与乙酰化赖氨酸发生作用,而赖氨酸位点的乙酰化修饰多存在于某些染色质修饰蛋白中[73],推测SIZ1介导SUMO化修饰可能竞争性抑制GTE3与SA应答基因染色质区发生乙酰化修饰的组蛋白发生作用。
SUMO化修饰促进HDA19同源物募集至转录复合体,HDAC1被SUMO化修饰后抑制转录[63]。植物中HDAC1、HDA19等主要SUMO位点保守性较强,SUMO化修饰可能参与调控HDA19募集至转录调节蛋白,研究发现拟南芥开花调控基因FLD可发生SUMO1化修饰,FLD编码组蛋白H3K4双甲基化和三甲基化去甲基酶,其SUMO化修饰位点突变降低组蛋白H4乙酰化水平[74],说明FLD的SUMO化修饰可以促进HAT表达活性。转录因子可能也通过SUMO化修饰调节SA应答基因表达,WRKYs 介导的转录调控过程可能包括SUMO蛋白酶被招募到WRKY转录复合体,植物SUMO蛋白酶是否参与植物防御反应调控仍不清楚[75]。另有研究发现番茄Xanthomonas campestrispv.vesicatoria分泌一种效应蛋白XopD,该蛋白包含一个SUMO蛋白酶结构域(EAR抑制基序),能抑制SUMO化修饰,XopD通过募集HDA19同源物至XopD结合的基因启动子区,抑制PR1基因的转录[76],XopD也能破坏HDA19转录抑制复合物,阻碍HDA19与包含EAR基序的植物防御系统调控蛋白(如NIMINs)结合形成复合物[60]。
4 展望
植物在长期与病原菌互作的过程中进化形成自身独特的免疫调控机制,核心仍然是调节基因表达。在信号进入细胞后植物应急启动一系列重要基因的转录重编程,染色质修饰、重塑、DNA甲基化等表观遗传修饰参与调控SA、JA等主要植物激素信号转导应答基因的表达或抑制,并建立系统获得抗性(SAR),还可通过一种依赖水杨酸和茉莉酸防御途径的组蛋白乙酰化、甲基化修饰实现表观遗传修饰的跨代传递,抵抗病原菌侵染的同时不断增强子代的抗病性。但仍存在大量亟待研究和解决的问题,比如病原菌胁迫信号通过什么精准调控机制激活组蛋白甲基化/去甲基化、乙酰化/去乙酰化修饰系统,不同的修饰模式如何匹配所调控基因分子网络,组蛋白修饰和植物激素转导在植物适应性进化中的协同作用机制,可否通过组蛋白修饰酶抑制剂来调节植物染色质修饰状态,调控组蛋白或染色质修饰状态的关键酶等。组蛋白修饰一直是植物分子生物学领域的研究热点,目前对甲基化和乙酰化方面探索比较深入,而对于SUMO化、泛素化等比较独特的修饰模式研究仍需加强,如SUMO E3连接酶SIZ1及其类似物如何参与染色质空间结构的调控以及SUMO蛋白酶的生物学功能等。近年来发现,逆境胁迫下植物组蛋白H3K27、H3K4、H3K9等位点修饰可作为一种胁迫印记参与抗病反应并传递至子代[77-78],而关于组蛋白的其他修饰是否也具备这样的功能不得而知。阐明表观遗传修饰在病原菌胁迫应答中的功能将大大有助于解析植物抗病机理,推动植物抗病育种进程。 參考文献
[1] JONES J D G, DANGL J L. The plant immune system [J]. Nature, 2006, 444: 323-329.
[2] DURRANT W E, DONG X. Systemic acquired resistance [J]. Annual Review of Phytopathology, 2004, 42: 185-209.
[3] MISHINA T E, ZEIER J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance inArabidopsis [J]. The Plant Journal, 2007, 50: 500-513.
[4] GARCIA-BRUGGER A, LAMOTTE O, VANDELLE E, et al. Early signaling events induced by elicitors of plant defenses[J].Molecular Plant-Microbe Interactions,2006,19:711-724.
[5] VERHAGE A, VAN WEES S C M, PIETERSE C M J. Plant immunity: it’s the hormones talking, but what do they say?[J]. Plant Physiology, 2010, 154: 536-540.
[6] GARCIA A V, PARKER J E. Heaven’s gate: nuclear accessibility and activities of plant immune regulators [J]. Trends in Plant Science, 2009, 14: 479-487.
[7] BHATTACHARJEE S, HALANE M K, KIM S H, et al. Pathogen effectors targetArabidopsis EDS1 and alter its interactions with immune regulators [J].Science,2011,334:1354-1355.
[8] HEIDRICH K, WIRTHMUELLER L, TASSET C, et al.Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses [J].Science, 2011, 334: 1401-1404.
[9] ZHU Zhaohai, XU Fang, ZHANG Yaxi, et al.Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor [J].Proceedings of the National Academy of Science,2010,107:13960-13965.
[10]DONG Xinnan. NPR1, all things considered[J]. Current Opinion in Plant Biology, 2004, 7: 547-552.
[11]CHENG Yuti, GERMAIN H, WIERMER M, et al. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators inArabidopsis [J]. The Plant Cell, 2009, 21: 2503-2516.
[12]ZHANG Ning, WANG Zhixue, BAO Zhilong, et al. MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle inArabidopsis [J].The Plant Journal, 2017, 93(1): 66-78.
[13]PAUWELS L, GOOSSENS A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade [J]. The Plant Cell, 2011, 23: 3089-3100.
[14]KOUZARIDES T. Chromatin modifications and their function[J]. Cell, 2007, 128: 693-705.
[15]YUN Miyong, WU Jun, WORKMAN J L, et al. Readers of histone modifications [J].Cell Research,2011,21:564-578. [16]ZHANG Xiaoyu, GERMANN S, BLUS B J, et al. TheArabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation [J].Nature Structural
关键词 组蛋白修饰; 病原菌; SA信号
中图分类号: S 432.2
文献标识码: A
DOI: 10.16688/j.zwbh.2018004
Abstract The gene expression in eukaryotic organisms is regulated by the change of spatial chromatin organization, which plays a very important role in the defense response of plant during the infection by plant pathogens. Salicylic acid acts as a key signal molecule,indirectly inducing systemic resistance against viral,fungal and bacterial attack. In this review,we simply introduced the mechanisms of pathogen perception,signal transduction and stimulation of plant defense response,and then focused on the posttranslational modifications of histone,histone variant and their functions in the expression of salicylic acidrelated genes.
Key words histone modification; plant pathogen; salicylic acid signal
高等植物自然生长过程中会受到细菌、真菌等植物病原体的侵染刺激,这种刺激会诱导以水杨酸(salicylic acid,SA)、茉莉酸乙烯(jasmonic acidethylene,JA/ET)信号途径为主的关键调控网络相关应答基因的活化,使植物能够抵御外部环境对其生长发育产生的不良影响。相对于动物体能通过特殊的内分泌腺产生激素,植物细胞亦能自主合成植物内源激素。SA是植物体内广泛存在的一种酚类物质,其作为诱导因子诱导植物对病毒、真菌及细菌病害产生抗性,对胁迫条件相关代谢过程起极其重要的调控作用。所有的植物活细胞均具备感知病原体侵染的潜能,最终建立始于局部病原体侵染信号的广谱系统性防御状态,即系统获得抗性(systemic acquired resistance,SAR)。在病原体侵染胁迫下,植物体迅速感知病害,通过一系列转录因子及级联信号,在细胞核内融合胁迫信号刺激,启动SA合成积累,调控SA应答基因转录过程。近年来,组蛋白修饰、DNA甲基化等表观遗传修饰参与调控植物胁迫应答方面的研究越来越深入,组蛋白翻译后修饰包含乙酰化、甲基化、磷酸化、泛素化、ADP核糖基化等多种方式,其中乙酰化、甲基化两种修饰模式研究得较多,组蛋白的修饰状态对于维持染色质结构和调控基因转录活性具有关键性作用。本文重点对植物组蛋白的主要修饰如何参与调控SA信号转导途径进行综述, 同时对该领域未来的重点研究方向进行讨论与展望。
1 植物天然防御应答
1.1 感知病原菌胁迫
基础抗性(又称非寄主抗性)是植物天然免疫性的一般表现形式,在宿主细胞内存在少量的模式识别受体(pattern recognition receptors,PRRs),PRRs特异性识别微生物-病原相关分子模式(microbial or pathogen associated molecular patterns,MAMPs/PAMPs),包括特定的蛋白、 脂多糖类或者细胞壁成分,激活MAMP/PAMP触发的植物免疫性(MAMP/PAMPtriggered plant immunity,MTI/PTI)。病原菌为抑制或克服MTI/PTI,增强效应蛋白进入宿主细胞的能力,形成一种效应蛋白诱导的感病性(effectortriggered susceptibility,ETS)。植物特异的抗性R基因识别相应avr基因效应因子后,激活ETI(effectortriggered immunity),启动主要防御基因表达诱导相关抗性[1],ETI通常在病原菌侵染部位引发超敏反应(hypersensitive response,HR),抑制侵染位点病原菌的生长,再由局部的PTI和ETI激发植物系统获得性抗性(SAR),提升植物远端组织乃至整株的防御能力[2-3]。
1.2 胁迫信号激发防御系统
致病信号通常在细胞表面或细胞质内被感知,信号传导至细胞核,继而引发相关基因转录。感知病菌侵染后,植物防御系统建立相关的早期事件涉及离子流、活性氧产生、磷酸化级联信号[4]。进而引起SA、JA、ET等植物激素浓度变化,细胞核感知识别转导途径次级信号,启动防御基因的转录表达[5]。
目前已鉴定出许多参与植物防御信号转导的重要因子[6]。病原菌侵染植物组织后,EDS1与PAD4、RPS4及病菌效应蛋白AvrRps4 形成独特的蛋白复合体,复合体穿梭于细胞质和细胞核之间,EDS1进一步与转录因子发生互作,调控SA应答基因进行转录表达[7-8]。病菌胁迫下,细胞核核质R蛋白SNC1(suppressor ofnpr1-1,constitutive1)与转录共抑制子TPR1(TOPLESS-related1)协同作用抑制DND1、DND2及其他负调节因子的表达[9]。NPR1 (non-expresser ofPR1)是SA介导的植物防御网络的关键调控因子,SA缺乏,NPR1在细胞质内形成均一型低聚合物;病原菌侵染刺激后,SA積累促进NPR1低聚合物转变为单聚体形态,单聚体NPR1与TGA转录因子作用,重新定位至细胞核,激活PR(pathogenesis-related)基因的表达[10]。此外,核质转运MOS1、MOS3、MOS6和 MOS7基因突变影响植物防御响应,MOS7-1等位基因突变抑制细胞核内EDS1、NPR1和SNC1合成表达[11],MOS1基因调控核内循环与免疫响应等生理过程,MOS1和TCP蛋白具有直接的物理相互作用,并与R类基因SNC1启动子结合,调控其表达,进而调节免疫应答[12]。植物细胞内大分子迁移、核内调节蛋白重新定位引起防御应答基因转录水平的变化,在植物防御分子调控网络中起关键作用。 同样JA信号也是在细胞核内被感知,缺乏JA的活化形式JA-ILEJA时,JAZ蛋白在核内与NINJA结合,募集共抑制子TOPLESS,抑制MYC2等JA应答转录因子的活性。胁迫条件下,植物体内大量合成JA,并在JAR1的催化下形成JA-Ile,JA-Ile促进COI1-JAZ共受体结合SCFCOI1形成SCFCOI1E3泛素连接酶复合体,引起多泛素化修饰和泛素化蛋白酶体途径介导的JAZ抑制子降解。JAZ降解减弱对目标转录因子活性的抑制,促进JA途径下游应答基因PDF1.2a、THI2.1、VSP2 的表达[13]。以上核内生物学过程在SA、JA等信号感知和防御相关基因的基础转录具有调节作用,但核质转运和染色质修饰如何建立直接或间接作用联系仍不明确。
2 组蛋白修饰改变染色质构象调控转录
真核细胞中染色质的结构与动态高度依赖于核小体定位和染色质的空间结构。通常紧密的异染色质区的基因处于沉默状态,而位于松散的常染色质区基因则处于转录激活状态。染色质结构的持续、瞬时变化可以通过组蛋白翻译后修饰(posttranslational histone modifications,PTMs)、组蛋白变体置换和依赖于ATP的染色质重塑等不同机制完成。
组蛋白尾部从球状核小体核心突出,可发生乙酰化、甲基化、磷酸化、泛素化、苏素化、羰基化和糖基化等多种可逆的PTMs[14],直接调节染色质结构或招募特定的效应子或组蛋白修饰识别蛋白,效应子或识别蛋白与组蛋白修饰的结合方式决定其复合体的调节功能[15]。通常组蛋白乙酰化与转录激活相关,去乙酰化与转录抑制相关。此外,组蛋白甲基化或泛素化也能激活或抑制转錄。拟南芥全基因组分析研究表明组蛋白H3K4和H3K36三甲基化和H2B 单泛素化(H2Bub)在表达基因区富集,而H3K27三甲基化与基因的表达抑制相关,H3K9二甲基化和H4K20单甲基化在组成型异染色质和转座子沉默区富集[16-17]。
模式植物拟南芥中已发现37种SET域蛋白,部分具有组蛋白甲基化转移酶活性[18],还有4种LSD1-like蛋白和21种含JmiC结构域的蛋白具有组蛋白去甲基化酶活性[19]。组蛋白H2B单泛素化参与调控植物多种发育过程,与基因激活有关,它的沉积需要E2泛素连接酶UBC1 与UBC2,和E3单泛素连接酶HUB1与 HUB2[20]。此外,拟南芥中已发现超过40种基因编码假定的依赖于ATP的染色质重塑因子,基于ATP酶亚基至少可以分为五类: SWI/SNF、ISWI、NURD/Mi-2/CHD、INO80、SWR1,依赖于ATP的染色质重塑酶利用ATP水解的能量使组蛋白和DNA结合去稳定化,降解组蛋白八聚体,催化特异组蛋白变体和DNA链的结合,重塑染色质结构[21]。组蛋白修饰和依赖ATP的染色质重塑相关酶在植物胁迫应答过程中起极其重要的调控作用。
3 组蛋白修饰参与植物SA信号转导途径调控
3.1 组蛋白乙酰化和甲基化
3.1.1 抑制SA应答基因的基础转录
SA在植物系统获得抗性(SAR)建立过程中扮演非常重要的信号分子的角色。通常植物体未受外部病原菌侵染,组蛋白去乙酰化酶SRT2抑制SA生物合成相关基因PAD4,EDS5和SID2的表达;而在番茄细菌性叶斑病病菌Pseudomonas syringaepv.tomato(Pst DC3000)侵染后,SRT2基因的表达受到抑制,增加SA的生物合成量,激发防御应答基因的起始转录表达[22]。许多SA途径应答基因具有W-BOX顺式调控元件,WRKYs转录因子能与此特征序列结合,拟南芥中研究发现WRKY18、WRKY40以及TGA2、SNI1等转录因子参与调节SA途径下游应答基因的基础转录[23-26]。WRKYs转录因子同样也调节PTI和ETI激活途径的下游响应基因的转录[27]。TGA2通过结合基因启动子as-1(activating-like sequence 1)顺式调控元件抑制受SA诱导的后期应答基因的基础转录[24,28-29]。在sni1和tga双突变体中,PR1和PR2基因的基础转录水平强于sni1和tga单突变体,说明TGA2抑制子与SNI1之间具有协同作用效应[24]。SNI1在植物体内组成型低水平表达且不受SA诱导[30],SNI1促进染色质修饰酶被募集至PR1基因启动子结合位点,减少组蛋白H3乙酰化和组蛋白H3K4二甲基化水平,维持染色质结构“紧闭”状态[31],敲除SNI1则引起PR1基因启动子组蛋白H3乙酰化和H3K4二甲基化水平升高[25]。
组蛋白去乙酰化酶HDA19活性也直接影响PR1、PR4、PR5等许多SA途径下游应答基因的基础表达水平[32]。 hda19突变体中PR1、PR4、PR5基因表达水平增加两倍,HDA19促进组蛋白H3K9、H3K27、H4K5、H4K8位点去乙酰化,调控染色质特异位点的基因沉默[32-33],在病原体侵染后,HDA19与多种蛋白形成复合体,通过其去乙酰酶活性抑制防御反应的负调控因子,进而激活防御反应。HDA19是否在SNI1抑制转录位点发生去乙酰化作用尚缺乏直接试验证据。
组蛋白乙酰转移酶ATX1是植物抵御病原菌Pst DC3000侵染的关键因子,ATX1正调控WRKY70转录因子的表达,WRKY70编码一个调控SA和JA信号转导网络交叉节点的关键转录因子,受SA诱导,并且参与间接调控JA诱导基因THI1.2的表达[34-35]。wrky70突变不影响PR1基因转录,表明ATX1通过一种不依赖于WRKY70的调控机制影响PR1基因的基础转录表达[36]。
组蛋白甲基转移酶SDG8能二甲基化和三甲基化H3K36位点[37],是受PstDC3000侵染激发的植物主动防御关键因子[38]。SDG8维持RPM1、LAZ5等R基因的基础表达水平,但对RPS2和RPS4没有影响。BTH处理或接种PstDC3000可诱导野生型植株中LAZ5的表达,而不能诱导sdg8突变体中LAZ5的表达。染色质免疫共沉淀(ChIP)研究处于休眠状态的拟南芥sdg8突变体,发现LAZ5染色质上H3K36三甲基化水平显著下降,而野生型植株LAZ5染色质区H3K36三甲基化水平并未发生显著上升[38]。因此,SDG8可能是通过使特定R基因的染色质H3K36位点甲基化建立一个“默许”(permissive)染色质结构状态,保持R基因的基础表达,SDG8建立的这种“默许”状态可能是某些特异R基因被诱导转录所必需的。最近研究表明sdg8突变体对丁香假单胞菌的侵染比野生型更为敏感[39]。 3.1.2 诱导SA应答基因的表达
植物中SA合成受苯丙烷代谢途径(phenylpropanoid metabolic pathway)的关键调控[40],该途径由PTI信号介导激活,同时诱导WRKY和MYB类转录因子产生,调控SA途径早期关键应答基因EDS1、PAD3、ICS1和NPR1的表达[41-42]。EDS1和PAD4是PTI激发SA积累的关键基因[43],EDS1启动子区被一种Ca2 /钙调蛋白结合转录因子SR1专一性结合后,表达受抑制,SR1突变SA水平增加,对丁香假单胞菌等病原体的抵抗力增强[44],SR1转录因子通过锚蛋白重复序列(ankyrin repeats)与HDAC2互作[45],在EDS1基因去乙酰化修饰中起关键作用。
NPR1基因对植物系统获得抗性和诱导系统抗性的产生起关键调控作用,过量表达NPR1可提高植物抗病性。SA积累促使NPR1定位至细胞核内,并发生单聚体化[42,46]。NPR1单聚体依赖BTB/POZ结构域80~90位氨基酸残基及羧基端半胱氨酸Cys-521和Cys-529的氧化与TGA二聚体发生作用形成NPR1-TGA增强体[46],削弱SNI1和TGA2介导的转录抑制作用,促进SA转导途径后期应答基因的大量表达,NPR1激活也能促使TGA2与as-1顺式调控元件结合,促进基因表达[47]。SA大量积累诱导SA应答基因染色质区的空间构象发生变化,研究表明外源SA处理12~48 h能提高PR1基因启动子H3和H4乙酰化、H3K4二甲基化和三甲基化水平[25,48-49],且PR1基因启动子H3乙酰化以及SA应答基因H3去乙酰化依赖于NPR1[49],这说明激活后的NPR1募集HAT,同时抑制去乙酰化活性。NPR1可能参与调节部分SA转导途径早期NPR1依赖性和后期应答基因的H3乙酰化水平,进一步研究发现H3乙酰化和H3K4二甲基化水平提高与SNI1无关,SA类似物处理sni1突变型和野生型,H3乙酰化和H3K4二甲基化水平相当[25]。
SA处理24 h后或PTI激活后PR1基因染色质区H3K4二甲基化和三甲基化水平未发生改变,推测H3K4二甲基化和三甲基化标记在PR1基因受诱导表达前就可能存在于其启动子区和编码区[25,35],另有研究报道H3K4二甲基化水平升高[25],这种差异可能是由H3K4二甲基化和三甲基化水平的瞬时升高造成[50]。在水稻中研究则发现H3K4二甲基化处于低中水平,而H3K4三甲基化则处于高水平[51]。H3K4甲基化通过结构依赖性方式募集具有HAT活性的转录激活复合体或者具有HDAC活性的转录抑制复合物[50],已有甲基化模式研究认为H3K4甲基化不直接影响基因转录[52],推測H3K4甲基化可能作为沉默基因染色质区的组蛋白修饰标记或其他转录调控复合体的作用靶点。
NPR1激活的SA应答基因包含WRKY18、WRKY38、WRKY54、WRKY58、WRKY59、WRKY66、WRKY70等许多WRKYs[53]。WRKY18、WRKY38、WRKY58是负调控因子[53-54]。然而在NPR1下游,WRKY18却作为正调控因子参与SA诱导的包括PR1在内的后期应答基因的表达[53]。WRKY70的转录不仅受到NPR1调控而且需要ATX1介导的H3K4三甲基化[35]。H3K4三甲基化是一个与转录激活有关的组蛋白标记,ATX1正调控WRKY70的表达,病原菌侵染或SA处理后,PR1的大量表达需要ATX1参与但其不是甲基化修饰的靶位点,WRKY70上游应答基因不受ATX1调控,下游PR1基因的表达主要受转录因子WRKY70调控[35]。总而言之,NPR1激活促进SA转导途径应答基因组蛋白H3、H4乙酰化及H3K4二甲基化等。
3.1.3 抑制NPR1依赖性基因的表达
SA途径应答基因在SA积累或植物防御系统激活后被短暂诱导。拟南芥中研究发现NPR1、NPR3、NPR4三种蛋白均为SA的受体,NPR1执行转录共激活子功能,NPR3和NPR4功能类似于E3连接酶,促进NPR1蛋白降解。而最新研究表明NPR3和NPR4具备转录共抑制子功能,SA抑制NPR3和NPR4的活性,进而促进NPR3和NPR4下游防御响应相关调控因子的表达,NPR3和NPR4与TGA2、TGA5、TGA6协同抑制参与病原菌诱导的SA合成相关转录因子SARD1、WRKY70。在npr4-4D(npr4等位基因)功能获得型突变体中NPR4蛋白丧失结合SA的能力,组成型抑制SA诱导的防御应答基因表达,而npr1功能获得型突变体中NPR1同样失去SA结合能力,反而促进SA诱导的防御应答基因表达,进一步研究分析揭示NPR3和NPR4、NPR1彼此独立调控SA诱导的防御应答[55]。NIMINs(NIM1-interacting proteins)参与后期响应基因的表达抑制,NIMINs通过竞争性结合NPR1,降解NPR1-TGA 激活复合物,抑制基因的表达[56-59]。NIMINs具有EAR(ethylene-response-factor-associated amphiphilic repressor)基序,在水稻中研究发现该基序是基因活性抑制所必需的[58-59]。EAR基序在适配体蛋白AtSIN3和AtSAP18的协同作用下招募HDA19共抑制复合体,增强基因沉默[60]。这暗示NIMINs可能是通过招募HDA19共抑制复合体来竞争结合NPR1-TGA 绑定的启动子位点。转录因子WRKY18 和WRKY40 也具有EAR基序[61],推测两者可能也通过上述机制来调控SA转导途径应答基因的表达。WRKY38和WRKY62转录因子在植物防御系统调控中起转录激活子作用,植物受病原菌侵染1~3 d后,HDA19与WRKY38和WRKY62互作,激活未知负调控因子,增强PR1基因的表达,但过表达HDA19可以完全抑制WRKY38和WRKY62的激活子活性[54]。HDA19也能与转录因子WRKY38 和WRKY62的转录共抑制子TPR1互作[9]。 3.2 组蛋白置换介导的SA应答基因表达
研究表明组蛋白置换介导SA应答基因的表达,在拟南芥中组蛋白变异体H2A.Z基因hta9和hta11双突变体激发PR1等SA转导途径应答基因的表达[62]。组蛋白H2A的置换由SWR1复合物调控,拟南芥中SWR1功能丧失促进WRKY18、WRKY38、NIMIN1、ICS1、EDS5和PR的表达[62]。目前已建立的模式认为H2A.Z沉积平衡基因的表达抑制和转录激活需要其他因子协同[63]。
H2A.Z缺失抑制甲基化区域的基因表达活性,DNA甲基化转移酶MET1突变会导致甲基化受抑制,H2A.Z沉积加剧,SWR1复合物亚型PIE1突变,H2A.Z沉积也发生变化,进而引起全基因组发生超甲基化现象,表明H2A.Z具有保护DNA免受甲基化的作用,其缺失可促进植物借助DNA甲基化修饰调控机制改变染色质结构,沉默相关基因[64]。H2A.Z可直接参与调控SNI1、TGA2、HDA19等SA应答基因转录抑制因子来平衡基因表达,抑制因子位点组蛋白置换缺失降低其自身的表达水平,同时激活SA应答基因的表达。H2A.Z沉积可能具有标记短时间内被抑制或保持表达水平的SA转导应答基因的作用,SA积累后应答基因染色质区的H2A.Z水平升高[63]。推测H2A.Z可能在SAR过程中提供“转录记忆”。
非胁迫条件下SWR1突变导致SA信号转导途径EDS5、ICS1、WRKY38、WRKY18、NIMIN1、CRK6、ACD6、PR1等基因的表达受到抑制,并且增强了对Pst DC3000的抗性[62],这些抑制与H2A.Z丢失、组蛋白乙酰化和H3K4三甲基化减少有关[65-66]。其原因可能是SWR1-like复合体促进H2A.Z在SA转导途径上游的未知抑制因子位点沉积,间接调控防御应答基因的表达。拟南芥arp6突變体试验发现缺磷胁迫应答基因染色质区H2A.Z发生丢失,基因表达抑制被消除[67]。因此H2A.Z沉积可能影响基因激活或抑制。
3.3 SUMO蛋白参与SA转导途径的转录调控
SUMO(small ubiquitin-like modifier)以组蛋白、HDA19和WRKYs为保守底物与其他蛋白质的共价连接参与调控染色质修饰复合体的招募,进而影响SA途径应答基因染色质构象,拟南芥中研究发现SIZ1(SUMO E3连接酶)基因作用于PAD4 、NPR1的上游,其突变导致SA应答基因的组成型表达,在siz1和pad4双突变体中,PR1表达未被完全抑制[68],SIZ1抑制基因表达并不依赖PAD4,而是可能通过与SNI1、TGA2、SR1和WRKYs作用抑制SA应答基因的转录[69]。
SIZ1能降低组蛋白乙酰化水平,保持SA应答基因染色质结构的紧密状态,研究发现SIZ1同源物可介导组蛋白H2A、H2B、H3、H4的SUMO化并抑制相关基因转录[70-71],推测拟南芥中SIZ1可能也具有SUMO化组蛋白的功能,siz1突变体中上调基因可能是受组蛋白SUMO化修饰调控。在植物中乙酰化和SUMO化两种修饰互相竞争抑制,H2A的SUMO化抑制其乙酰化[71]。H2A的SUMO化或乙酰化是否在SA应答基因的转录调控方面发挥作用尚无直接实验证据。SIZ1还可通过其PHD结构域与具有BROMO结构域的GTE3发生作用,以GTE3为结合底物,SUMO修饰抑制GTE3与组蛋白H3乙酰化尾部多肽结合[72],由于BROMO结构域通常与乙酰化赖氨酸发生作用,而赖氨酸位点的乙酰化修饰多存在于某些染色质修饰蛋白中[73],推测SIZ1介导SUMO化修饰可能竞争性抑制GTE3与SA应答基因染色质区发生乙酰化修饰的组蛋白发生作用。
SUMO化修饰促进HDA19同源物募集至转录复合体,HDAC1被SUMO化修饰后抑制转录[63]。植物中HDAC1、HDA19等主要SUMO位点保守性较强,SUMO化修饰可能参与调控HDA19募集至转录调节蛋白,研究发现拟南芥开花调控基因FLD可发生SUMO1化修饰,FLD编码组蛋白H3K4双甲基化和三甲基化去甲基酶,其SUMO化修饰位点突变降低组蛋白H4乙酰化水平[74],说明FLD的SUMO化修饰可以促进HAT表达活性。转录因子可能也通过SUMO化修饰调节SA应答基因表达,WRKYs 介导的转录调控过程可能包括SUMO蛋白酶被招募到WRKY转录复合体,植物SUMO蛋白酶是否参与植物防御反应调控仍不清楚[75]。另有研究发现番茄Xanthomonas campestrispv.vesicatoria分泌一种效应蛋白XopD,该蛋白包含一个SUMO蛋白酶结构域(EAR抑制基序),能抑制SUMO化修饰,XopD通过募集HDA19同源物至XopD结合的基因启动子区,抑制PR1基因的转录[76],XopD也能破坏HDA19转录抑制复合物,阻碍HDA19与包含EAR基序的植物防御系统调控蛋白(如NIMINs)结合形成复合物[60]。
4 展望
植物在长期与病原菌互作的过程中进化形成自身独特的免疫调控机制,核心仍然是调节基因表达。在信号进入细胞后植物应急启动一系列重要基因的转录重编程,染色质修饰、重塑、DNA甲基化等表观遗传修饰参与调控SA、JA等主要植物激素信号转导应答基因的表达或抑制,并建立系统获得抗性(SAR),还可通过一种依赖水杨酸和茉莉酸防御途径的组蛋白乙酰化、甲基化修饰实现表观遗传修饰的跨代传递,抵抗病原菌侵染的同时不断增强子代的抗病性。但仍存在大量亟待研究和解决的问题,比如病原菌胁迫信号通过什么精准调控机制激活组蛋白甲基化/去甲基化、乙酰化/去乙酰化修饰系统,不同的修饰模式如何匹配所调控基因分子网络,组蛋白修饰和植物激素转导在植物适应性进化中的协同作用机制,可否通过组蛋白修饰酶抑制剂来调节植物染色质修饰状态,调控组蛋白或染色质修饰状态的关键酶等。组蛋白修饰一直是植物分子生物学领域的研究热点,目前对甲基化和乙酰化方面探索比较深入,而对于SUMO化、泛素化等比较独特的修饰模式研究仍需加强,如SUMO E3连接酶SIZ1及其类似物如何参与染色质空间结构的调控以及SUMO蛋白酶的生物学功能等。近年来发现,逆境胁迫下植物组蛋白H3K27、H3K4、H3K9等位点修饰可作为一种胁迫印记参与抗病反应并传递至子代[77-78],而关于组蛋白的其他修饰是否也具备这样的功能不得而知。阐明表观遗传修饰在病原菌胁迫应答中的功能将大大有助于解析植物抗病机理,推动植物抗病育种进程。 參考文献
[1] JONES J D G, DANGL J L. The plant immune system [J]. Nature, 2006, 444: 323-329.
[2] DURRANT W E, DONG X. Systemic acquired resistance [J]. Annual Review of Phytopathology, 2004, 42: 185-209.
[3] MISHINA T E, ZEIER J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance inArabidopsis [J]. The Plant Journal, 2007, 50: 500-513.
[4] GARCIA-BRUGGER A, LAMOTTE O, VANDELLE E, et al. Early signaling events induced by elicitors of plant defenses[J].Molecular Plant-Microbe Interactions,2006,19:711-724.
[5] VERHAGE A, VAN WEES S C M, PIETERSE C M J. Plant immunity: it’s the hormones talking, but what do they say?[J]. Plant Physiology, 2010, 154: 536-540.
[6] GARCIA A V, PARKER J E. Heaven’s gate: nuclear accessibility and activities of plant immune regulators [J]. Trends in Plant Science, 2009, 14: 479-487.
[7] BHATTACHARJEE S, HALANE M K, KIM S H, et al. Pathogen effectors targetArabidopsis EDS1 and alter its interactions with immune regulators [J].Science,2011,334:1354-1355.
[8] HEIDRICH K, WIRTHMUELLER L, TASSET C, et al.Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses [J].Science, 2011, 334: 1401-1404.
[9] ZHU Zhaohai, XU Fang, ZHANG Yaxi, et al.Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor [J].Proceedings of the National Academy of Science,2010,107:13960-13965.
[10]DONG Xinnan. NPR1, all things considered[J]. Current Opinion in Plant Biology, 2004, 7: 547-552.
[11]CHENG Yuti, GERMAIN H, WIERMER M, et al. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators inArabidopsis [J]. The Plant Cell, 2009, 21: 2503-2516.
[12]ZHANG Ning, WANG Zhixue, BAO Zhilong, et al. MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle inArabidopsis [J].The Plant Journal, 2017, 93(1): 66-78.
[13]PAUWELS L, GOOSSENS A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade [J]. The Plant Cell, 2011, 23: 3089-3100.
[14]KOUZARIDES T. Chromatin modifications and their function[J]. Cell, 2007, 128: 693-705.
[15]YUN Miyong, WU Jun, WORKMAN J L, et al. Readers of histone modifications [J].Cell Research,2011,21:564-578. [16]ZHANG Xiaoyu, GERMANN S, BLUS B J, et al. TheArabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation [J].Nature Structural