论文部分内容阅读
传统的等距特征映射算法在降维时未考虑数据的类别标签,降维后不能够产生从高维到低维的映射矩阵,且不适用于多个类簇的情况,不能直接用于分类。针对这几个问题利用近邻元分析方法取代多维尺度分析法,并且引入特征向量作为输入矩阵,提出一种以分类为目的的等距特征映射算法(NC-ISOMAP)。降维时获取理想的低维投影矩阵,使降维后类间数据更加分开,类内数据更加紧凑。实验结果表明NC-ISOMAP算法能够取得很好的降维效果和分类性能,并在不同的数据集中有着较好的鲁棒性。