Multiple-model Bayesian filtering with random finite set observation

来源 :Journal of Systems Engineering and Electronics | 被引量 : 0次 | 上传用户:stong_sz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The finite set statistics provides a mathematically rigorous single target Bayesian filter(STBF) for tracking a target that generates multiple measurements in a cluttered environment.However,the target maneuvers may lead to the degraded tracking performance and even track loss when using the STBF.The multiple-model technique has been generally considered as the mainstream approach to maneuvering the target tracking.Motivated by the above observations,we propose the multiple-model extension of the original STBF,called MM-STBF,to accommodate the possible target maneuvering behavior.Since the derived MMSTBF involve multiple integrals with no closed form in general,a sequential Monte Carlo implementation(for generic models) and a Gaussian mixture implementation(for linear Gaussian models) are presented.Simulation results show that the proposed MM-STBF outperforms the STBF in terms of root mean squared errors of dynamic state estimates. The finite set statistics provides a mathematically rigorous single target Bayesian filter (STBF) for tracking a target that creates multiple measurements in a cluttered environment. However, the target maneuvers may lead to the degraded tracking performance and even track loss when using the STBF. multiple-model technique has been generally considered as the mainstream approach to maneuvering the target tracking. Motivated by the above observations, we propose the multiple-model extension of the original STBF, called MM-STBF, to accommodate the possible target maneuvering behavior. the derived MMSTBF assumes multiple integrals with no closed form in general, a sequential Monte Carlo implementation (for generic models) and a Gaussian mixture implementation (for linear Gaussian models) are presented. Simulation results show that the proposed MM-STBF outperforms the STBF in terms of root mean squared errors of dynamic state estimates.
其他文献
会议
大环内酯类抗生素广泛用于治疗呼吸道感染,但日益泛滥的大环内酯耐药菌正影响着公众的健康。为了解决这一问题,科研工作者对大环内酯类化合物进行了大量的结构修饰。综述近年
LCZ-696是诺华公司开发、由血管紧张素受体阻滞剂缬沙坦和脑啡肽酶阻断剂sacubitril组成的抗心衰复方新药,因具有对血管紧张素受体-脑啡肽酶的双重抑制作用,在临床试验中其对
会议
会议
会议
会议
目的 观察糖尿病周围神经病变(DPN)综合康复治疗的临床疗效.方法 在该院2017年10月—2019年10月接受治疗的DPN患者中选取86例,随机分为两组,每组43例,治疗时,给予对照组常规
会议
阅读教学是语文教学中至关重要的内容,教师要转变阅读教学的理念,根据学生的需求选择恰当的教学方法,去培养学生的阅读兴趣,帮助学生养成阅读习惯.因此,教师在语文教学中要想