危机个案家访“访”什么

来源 :中国社会工作 | 被引量 : 0次 | 上传用户:lmjgood520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
<正>对于涉及学生的危机事件,无论学校还是家庭都会很紧张,因为一旦造成不良后果,双方都难以承受。此类事件中家庭的配合与支持特别重要,驻校社工需要在家访服务中获得来自家庭的力量。那么危机个案中驻校社工该如何开展家访?家访“访”什么?笔者结合自身经验,总结出以下几点。危险情况细告知服务对象有伤害身体的行为、放弃生命的想法或者实施自杀未果等情况,都属于危机个案。家访时,
其他文献
金属杂芳香化合物因其具有芳香化合物和金属有机化合物的双重性质以及独特的理化性能,越来越受到科学工作者的关注。2021年,本课题组合成了铼杂吡喃鎓并环丙烯化合物,理论计算表明铼杂吡喃鎓具有π芳香性,铼杂环丙烯具有σ芳香性。本论文在此基础上通过改变主族杂原子的种类,稠环的个数进行底物拓展,构筑了铼杂非那烯、苯并双铼杂吡喃鎓以及铼杂吡啶鎓三类含有铼杂环丙烯结构的化合物,并对其芳香性进行了研究。主要内容如
学位
将温室气体二氧化碳电催化转化为增值化学品对维持碳平衡具有重要意义。在电催化二氧化碳还原反应(CO2RR)中,设计、开发高效催化剂以克服CO2固有的热力学稳定性与低电子亲和力带来的动力学障碍是热点研究领域。金属酞菁因其明确的分子骨架、电子特性和化学可修饰性构成了一类有前途的金属分子催化剂,可用于CO2到CO电催化转化。本文通过金属酞菁的结构修饰、载体的筛选及调控金属酞菁与载体的结合方式等设计、制备了
学位
全有机砌块构建的热活化延迟荧光(TADF)型发光材料,可以让最低三重态激发态(T1)激子经反系间窜越(RISC)过程转变为最低激发单重态(S1)激子而发出延迟荧光,实现100%的激子利用率。然而,蓝光TADF材料仍面临一系列问题,如:大的单-三重态能隙(ΔEST)、较低的反系间窜越速率常数(KRISC)、不理想的蓝光色纯度等。本文主要对传统的给、受体进行改造,使得新材料能在上述方面有所改善。咔唑具
学位
高烯丙醇、高烯丙胺是合成众多天然药物分子的重要中间体。金属催化醛、酮及亚胺的直接烯丙基化是制备高烯丙醇、高烯丙胺的重要方法,这一直是有机反应研究的热点。在反应过程中,金属与烯丙基试剂结合生成烯丙基金属络合物。当反应体系中存在金属试剂时,烯丙基钯络合物可以与其进行配体交换,从而实现极性翻转。而烯丙基钴络合物的极性翻转仅利用可见光催化就可以实现。我们设想利用可见光与钴协同催化体系实现醛的烯丙基化。我们
学位
在弱刚性平面构件的精密加工中,工件初始残余应力大小和分布是影响其加工变形的重要因素。因此,本文提出对称成形-对称应力调控-对称去除的轧制纯铜平面件制造工艺,开发平面件淬火加去应力退火的新热处理方法,调控纯铜平面件残余应力使其在厚度方向上对称,建立对称成形-对称应力调控-对称去除有限元仿真模型,预测轧制纯铜平面件在新热处理工艺中残余应力演化过程,并研究纯铜平面件初始残余应力对后续加工变形的影响,实现
学位
传统的聚烯烃材料具有出色的耐腐蚀性能和优异的机械性能,在日常生活中扮演着重要的角色,被广泛应用于医疗卫生、汽车制造、食品包装、机械工程等领域。然而,仅由碳和氢元素组成的结构使其具有非极性的特点,大大限制了应用范围。因此,在聚烯烃中引入极性官能团受到各国学者的关注,通过在聚合物链上引入极性官能团,可以显著提高聚烯烃材料的表面性能、染色性能和粘附性能等,拓宽了材料的应用范围。本文设计了多种含N、O和S
学位
报纸
随着空间探测技术指标的提升,空间探测系统对天线反射面板提出了越来越高的制造要求,要求表面粗糙度优于Sa7 nm。为满足上述指标要求,需要对其表面复制成型的富树脂层进行修型加工。然而树脂材料具有粘弹性的特点,采用固结磨粒加工易出现刀具堵塞、树脂涂覆等问题,同时树脂的玻璃化温度低,需严格控制加工区温度。富树脂层的厚度仅为100μm左右,对其加工属于微量去除,需要选用材料去除率低且加工温度低的抛光加工方
学位
很多现代高精度零件具有多尺度表面特征、高精度面形和极低粗糙度等特点,传统古典抛光已不适合,需要确定性的材料去除方法,即计算机控制的抛光技术(Computercontrolled Polishing,CCP)实现。现有CCP技术如气囊抛光、离子束抛光、磁流变抛光等在效率、成本及工件口径适用性等方面各有优劣。轮式聚氨酯柔性抛光粗糙度低、材料去除率高,但是由于抛光模的易磨损,材料去除率下降和抛光质量的恶
学位
过渡金属纳米颗粒(TMNP)在催化反应中常表现出高的活性和产物选择性,但如何实现TMNP的分离回收以及循环使用是目前该领域亟需解决的难题。为解决上述难题,本课题组前期设计合成了一种具有“浊点”(Cp)特性的温控膦配体Ph2P(CH2CH2O)22CH3(LP1000)。本论文将其作为稳定剂,以H2为还原剂还原Ru Cl3·x H2O,制备温控相转移纳米Ru(TPT-Runano),通过UV-vis
学位