Tailorable,Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic I

来源 :纳微快报(英文版) | 被引量 : 0次 | 上传用户:as78dfg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Liquid metal (LM) has become an emerging material paradigm in the electro-magnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM compos-ites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere (EM) is proposed to develop a new class of LM-based monoliths with 3D continu-ous conductive network.The EM/LM monolith(EM/LMm) presents outstanding performance of lightweight like metallic aerogel (0.104 g cm-1),high strength (3.43 MPa),super elasticity (90% strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness (98.7 dB) over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.
其他文献
期刊
The electroreduction reaction of CO2 (ECO2RR) requires high-performance catalysts to convert CO2 into useful chemicals.Tran-sition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO2RR.This work presents
开发了一种新型的纳米微晶silicate-1(S-2)的合成方法.与常规的silicate-1(S-1)相比,S-2具有较小的粒径和光滑的晶体表面.当S-2作为晶种合成纳米ZSM-5聚集体时,ZSM-5团聚体为尺寸为0.8~1.0μm的单分散颗粒,构成团聚体的ZSM-5晶体为b轴厚度为60~80 nm的纳米薄片.ZSM-5纳米薄片沿着同一方向规则地堆叠形成独特的孔结构,该孔结构包括1.3 nm的均一孔道和25 nm的宽尺寸孔道.
Flexible pressure sensors with high sensitivity are desired in the fields of electronic skins,human-machine interfaces,and health monitoring.Employing ionic soft materials with microstructured archi-tectures in the functional layer is an effective way tha
In conventional ethylene carbonate (EC)/propylene car-bonate (PC) electrolyte,sodium metal reacts spontaneously and del-eteriously with solvent molecules.This significantly limits the prac-tical feasibility of high-voltage sodium metal batteries based on
The enzyme-mediated elevation of reactive oxygen species (ROS) at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment.Herein,we proposed a camouflaged bionic cascaded-enzyme nano-reactor based
The development of lightweight and integration for electronics requires flexible films with high thermal con-ductivity and electromagnetic interference (EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution.Herein,the hierar
Atomically dispersed metals on N-doped carbon sup-ports (M-NxCs) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss pro
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabri-cate high-density silicon (Si) m
High-temperature electromagnetic (EM) protec-tion materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In this work,a novel microwave modulat