论文部分内容阅读
讨论了非线性四阶边值问题{u(4)(t)=f(t,u(t),u′(t),u″(t)),t∈[0,1],u(0)=u(1)=u″(0)=u″(1)=0解的存在性,其中f(t,x,y,z):[0,1]×R×R×R→R为连续函数.应用上下解方法与截断函数技巧获得了一个解的存在性,并给出了一个应用的例子.