基于正交试验法的纯电动赛车动力参数优化

来源 :森林工程 | 被引量 : 0次 | 上传用户:my363
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:为保证续驶里程的前提下,提高纯电动赛车的动力性能和比赛竞争力,确定赛车整车参数与动力性能目标,对电机、电池和主减速比等动力参数进行设计及匹配计算,通过CRUISE仿真软件搭建整车模型,并建立75 m直线加速、最高车速与NEDC循环工况等任务,利用正交试验法,采用三因素三水平对赛车电机的额定功率、额定转速和传动比进行优化组合,运用极差分析法对仿真结果计算分析,对优化后的动力参数进行仿真。优化仿真结果表明:与原设计方案相比,赛车的75 m直线加速时间为3.98 s,缩短了2.926%;最高车速达到164 km/h,提高了9.342%;最大续驶里程达到30.143 km,提高了0.685%。研究结果表明正交试验法可以对赛车动力参数优化的研究提供一定参考。
  关键词:电动方程式赛车;动力系统;参数匹配;正交试验
  中图分类号:U463.1    文献标识码:A   文章编号:1006-8023(2021)03-0088-07
  Abstract:In order to ensure the continuous driving range on the premise of improving the power performance and competition competitiveness of pure electric racing cars, the vehicle parameters and dynamic performance targets of the racing cars were determined, and the motor, battery, main reduction ratio and other dynamic parameters were designed and matched. The vehicle model was built by Cruise simulation software, and 75 m linear acceleration, top speed with the NEDC cycle conditions were established. Using the orthogonal experiment method, the three factors and three levels of car motor rated power, rated speed and transmission ratio was optimized combination. The range analysis method was used to calculate and analyze the simulation results, and the dynamic parameters after optimization were simulated. The simulation results showed that, compared with the original design scheme, the 75 m linear acceleration time of the race car was 3.98 s, which was shortened by 2.926%. The maximum speed reached 164 km/h, increased by 9.342%. The maximum driving range reached 30.143 km, increased of 0.685%. The research content of this paper shows that the orthogonal test method can provide a certain reference for the research on the optimization of dynamic parameters of racing cars.
  Keywords:Electric formula car; power system; parameter matching; orthogonal test
  0 引言
  電动方程式赛车要求拥有良好的动力性能与经济性能,能够完成直线加速、8字环绕测试、高速避障测试和耐久测试等比赛项目[1]。
  在符合赛事规则的情况下,针对赛车的动力系统进行优化,可以提高赛车在比赛中的竞争力。赵晟超等[2]利用Optimum Lap搭建赛道模型,对赛车传动比进行优化,用CRUISE软件验证赛车经济性提高;仝志辉等[3]采用双电机布置形式,建立电动方程式赛车模型及循环工况,使用CRUISE软件对电动方程式赛车进行动力性、经济性工况仿真分析;佟刚等[4]通过对ADVISOR软件进行二次开发,将前轮驱动模型改为后轮驱动模型,并运用ADVISOR仿真软件对电动赛车的动力系统以及续驶里程进行仿真分析;Prochazka等[5]根据电机转矩与速度、功率与速度的关系优化传动比,提高电机效率。但这些文献主要是针对赛车的动力电池与传动比进行研究,而动力传动系统参数是纯电动赛车的关键参数[6],没有综合考虑驱动电机的额定功率、额定转速与传动比对赛车动力性以及经济性的影响。
  本文在确定电动赛车动力系统选型与参数匹配基础上,研究利用正交试验法与CRUISE软件针对驱动电机的额定功率、额定转速与传动比进行优化组合,实现赛车动力性能与经济性能的优化。
  1 电动方程式赛车动力装置选型及参数匹配
  目前,国内外赛车常用的驱动布置形式有单电机后轮驱动、双电机后轮驱动、一体式电机驱动与四轮电机驱动等。由于单电机后轮驱动布置结构简单紧凑、整车质量轻等优点,本文采用单电机后轮驱动。   1.1 赛车整车参数及动力性指标
  纯电动赛车动力参数匹配时,需要考虑部件之间的配合以及能够满足赛车的性能需求。赛车的动力性能指标决定了动力系统总成、整车动力性能及比赛成绩。参考国内外赛车的设计方案和性能参数[7],确定电动赛车的整车主要参数及动力性能指标,见表1。
  2.3 确定优化组合方案
  根据表6结果,最终确定的匹配方案为电机的额定功率为32 kW,额定转速为3 000 r/min,主减速器传动比为4.96。
  将确定的优化组合输入整车模型进行仿真,对比优化前后的仿真结果,75 m直线加速如图2和图3所示,最高车速如图4和图5示。可以看出,优化后赛车的动力性能有所改善,75 m直线加速时间比优化前提高了2.926%,其最高车速比优化前提高了9.342%,赛车的续驶里程也有一定的提高,相比之前提高了0.685%。优化前后评价指标对比见表7。
  相比优化前,赛车最大加速度略有增大,前期以较大加速度行驶的时间段变长,后期加速度减小幅度变缓,赛车加速性能得到增强。优化前后的赛车性能均满足设计目标,在额定转速不变的情况下,额定功率的提高使峰值转矩得到提高,这使赛车起步加速性能增强。赛车主减速器传动比大小会影响整车的动力性能,传动比过大,则最高车速变小,高速路段时间增加。传动比过小,则加速度变小,加速性能下降。优化后,赛车的传动比减小,最高车速提高了,但额定功率的增加使赛车加速性能没有太大影响,赛车动力性能和经济性能都有提高,使赛车的动力参数得到优化组合。
  3 结论
  本文首先依据纯电动赛车的设计目标,对赛车的动力装置参数进行匹配,在确定赛车的动力装置参数后,通过正交试验法将赛车的额定功率、额定转速与主减速器传动比进行正交试验,得到优化的组合方案。试验仿真结果表明:正交试验法可以明显改善赛车的性能,优化后赛车的75 m直线加速时间为3.98 s,最高车速达到164 km/h,最大续驶里程达到30.143 km。因此,将正交试验法应用于赛车的动力装置参数优化匹配方案,可以提高赛车动力性能和比赛时的竞争力。
  【参 考 文 献】
  [1]田哲文,袁晓东,刘易斯,等.电动方程式赛车传动系统的设计与仿真[J].汽车科技,2016,44(4):34-38.
  TIAN Z W, YUAN X D, LIU Y S, et al. Power-train design and simulation of electric formula car[J]. Automobile Science & Technology, 2016, 44(4):34-38.
  [2]趙晟超, 朱利静, 陈浩, 等. 纯电动赛车动力系统匹配优化与仿真[J]. 计算机仿真, 2019, 36(1):187-191.
  ZHAO S C, ZHU L J, CHEN H, et al. Optimal matching of power system and simulation for electric racing car[J]. Computer Simulation, 2019, 36(1):187-191.
  [3]仝志辉,吴全君,游远翔.电动方程式赛车双电机动力系统设计与仿真[J].现代电子技术,2019,42(15):139-143.
  TONG Z H, WU Q J, YOU Y X. Design and simulation of dual-motor power system for electric formula racing car[J]. Modern Electronics Technique, 2019, 42(15):139-143.
  [4]佟刚,关健.基于ADVISOR的FSEC赛车动力系统参数设计[J].沈阳航空航天大学学报,2017,34(2):38-43.
  TONG G, GUAN J. Parameter design of power system for FSEC vehicle based on ADVISOR software[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2017, 34(2):38-43.
  [5]PROCHAZKA P, PAZDERA I, VOREL P, et al. Design of small electric car[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, IEEE, Italy, 2012.
  [6]李胜琴,于博.基于CRUISE的纯电动汽车动力参数匹配设计及仿真[J].森林工程,2019,35(1):80-86.
  LI S Q, YU B. Matching design and simulation for power train parameter of pure electric vehicle based on CRUISE[J]. Forest Engineering, 2019, 35(1):80-86.
  [7]邓家奇. FSAE纯电动赛车动力匹配及试验研究[D]. 西安:长安大学, 2016.
  DENG J Q. FSAE electric racing power system matching and experimental research[D]. Xi’an: Chang’an University, 2016.   [8]王智超.电动汽车动力系统参数匹配及优化分析研究[D].西安:西安科技大学,2018.
  WANG Z C. Research on parameter matching and optimization of power system of electric vehicle[D]. Xi’an: Xi’an University of Science and Technology, 2018.
  [9]孙嵩松,万茂松,徐晓美.不同临界距离法在曲轴疲劳特性预测中的对比研究[J].机械强度,2020,42(2):431-436.
  SONG S S,WAN M S, XU X M. A comparative stud-y of the application of different TCD in crankshaft fatigue property prediction[J]. Journal of Mechanical Strength, 2020, 42(2): 431-436.
  [10]余志生.汽车理论[M].北京:机械工业出版,2019:2-90.
  YU Z S. Automotive theory[M]. Beijing: China Machine Press, 2019.
  [11]崔淑华,迟云超.某纯电动轿车动力系统匹配设计及CRUISE仿真研究[J].森林工程,2018,34(2):65-69.
  CUI S H, CHI Y C. Research on power system matching and simulation of pure electric vehicle based on CRUISE[J]. Forest Engineering, 2018, 34(2):65-69.
  [12]王標.基于电池模型的汽车铅酸电池SOC在线估计方法研究[D].合肥:合肥工业大学,2015.
  WANG B. Research on SOC estimation method of automotive lead-acid battery based on battery model[D]. Hefei: Hefei University of Technology, 2015.
  [13]REN Q, CROLLA D A, MORRIS A. Effect of geared transmissions on electric vehicle drivetrains [C]// ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, 2009.
  [14]葛曹鹏,徐晓美,朱中辉.基于COMSOL的某轻型货车排气消声器设计[J].制造业自动化,2019,41(8):29-31.
  GE C P, XU X M, ZHU Z H. Design of exhaust muffler for the light truck based on COMSOL[J]. Manufacturing Automation, 2019, 41(8): 29-31.
  [15]高琼,田军.正交设计法在环保型橡胶沥青试验配比中的应用研究[J].公路工程,2019,44(6):115-118.
  GAO Q, TIAN J. Study on the application of orthogonal design method in the matching of environmental protection rubber asphalt test[J]. Highway Engineering, 2019, 44(6):115-118.
  [16]谢颉,张文光,尹雪乐,等.基于正交试验方法的柔性神经电极优化设计[J].上海交通大学学报,2020,54(8):785-791.
  XIE J, ZHANG W G, YIN X L, et al. Optimization design of flexible neural electrodes based on orthogonal experimental method[J]. Journal of Shanghai JiaoTong University, 2020, 54(8):785-791.
  [17]张裕晨,高坤明,路艳玲,等.基于正交试验法整定主动悬架PID控制器参数[J].山东理工大学学报(自然科学版),2021,35(1):63-68.
  ZHANG Y C, GAO K M, LU Y L, et al. PID controller parameters of active suspension are adjusted based on orthogonal test method[J]. Journal of Shandong University of Technology (Natural Science Edition), 2021,  35(1):63-68.
  [18]田杰,胡晨,汤李建,等.主动四轮转向车辆的分层控制[J].机械设计,2018,35(4):47-54.
  TIAN J, HU C, TANG L J, et al. Hierarchical control research on active 4WS vehicle[J]. Journal of Machine Design, 2018, 35(4): 47-54.
其他文献
为研究金沙江头塘小流域土壤种子库状况,对5种典型人工林植被样地采集土样做种子萌发试验,以期为金沙江植被恢复提供更新预测。结果表明,(1)5块样地共萌发植物22科,41种植物。其中,草本植物占绝大多数,有34种,占82.930%;灌木4种,占9.756%;乔木有3种,占7.317%。(2)萌发的种子密度由大到小排序为:上层、中层、下层。上层的种子密度显著大于中层和下层,中层和下层所含种子的数量差别较
柏木(Cupressus funebris)是三峡库区喀斯特地貌区的主要乡土树种,为了解柏木人工林不同混交种植模式对土壤转化酶活性和碳氮含量的影响,筛选最优的柏木栾树混交种植模式,实现柏木人工林的可持续发展。本研究基于随机区组设计,以柏木纯林为对照,研究三峡库区栾树(Koelreuteria paniculata)和柏木(栾柏)带状混交、栾柏块状混交和栾柏株间混交3种混交种植模式对不同土层厚度下(
摘 要:可燃物是林火發生发展的物质基础条件,构成林火行为的主体。定量评价不同火烧程度火烧迹地死可燃物载量的影响对于理解火因子在生态系统中的作用具有重要意义。以恢复了10 a的内蒙古根河林区2009 年火烧迹地为研究区域,于2019 年6 月对研究区展开调查,沿海拔梯度设置9 块20 m×20 m标准样地,在每个标准样地中沿对角线设置 5 个小样方(1 m× 1 m),共 45 个。调查和测定环境因
摘 要:为了解胡桃楸在不同密度次生林中胸径、树高及单株材积对冠幅的影响程度,利用通径分析及相关分析的方法,对黑龙江省张广才岭林区3种密度等级(Ⅰ:≤ 500株/hm2,Ⅱ:>500~600株/hm2,Ⅲ:≥600株/hm2)下次生林中优势树种胡桃楸的胸径、树高、单株材积与冠幅之间的关系进行分析。结果表明:①随着林分密度的增大,冠幅的生长速度逐渐降低,在Ⅰ级密度的林分中胡桃楸冠幅涨幅最大,高于密度Ⅱ
为掌握短波广播台站的覆盖区域,合理规划、调整各站点发射参数,使其频率资源得到更为精准的使用,本文基于ITU-R P.533算法,开发了一套短波广播覆盖分析软件。该软件能够有机
摘 要:為探究小兴安岭针阔混交天然次生林优势树种非结构性碳水化合物质量分数随树种、器官和间伐强度的变化特征,进而了解林带间伐后的非结构性碳水化合物(nonstructural carbohydrates,NSC)分配格局、生长状况、适应策略和恢复潜力,在小兴安岭针阔混交天然次生林6种间伐强度(0%,15%,20%,25%,30%,35%)的林带中,选取5个主要树种, 采集树木枝条、树干和树叶, 测
随着无线通信的快速发展,频率资源日益紧张,认知无线电技术在未来无线通信中将发挥越来越重要的作用。频谱感知是认知无线电的关键部分。现有的频谱感知技术主要有能量检测法
用平板对峙法研究贝莱斯芽胞杆菌(Bacillus velezensis)和甲基营养型芽孢杆菌(B.methylotrophicus)对云杉梢枯病病原菌寄生小穴壳(Dothiorella gregaria)的抑菌活性,测定2种
伴随无人机技术的不断发展,无人机产品逐步在众多行业领域中广泛应用。2020年是5G商用元年,作为新一代移动蜂窝通信技术,5G具有高速率、低功耗、低时延等技术特点,而随着5G网
为了解吉林省猪伪狂犬病毒(PRV)的遗传变异情况,本研究将采集自吉林省疑似发生猪伪狂犬病的临床样品,通过细胞传代、PCR检测和测序分析进行病毒分离鉴定。TCID50法测定分离毒