论文部分内容阅读
对齿轮信号奇异值分布规律进行研究,提出一种EEMD-SVD差分谱组合模式。对原始信号做集合经验模态分解得到一系列固有模态分量,对其进行有效的筛选并且重构,对重构的信号构造Hankel矩阵,再通过SVD对矩阵做正交分解,利用奇异值差分谱来选择奇异值进行SVD重构,由此实现对弱故障特征信息提取。从齿轮信号的处理结果看出,该方法对复杂信号中的弱故障特征信息具有优良的提取效果。