前驱物和表面活性剂对等离子体电化学法制备银纳米颗粒的影响

来源 :材料科学与工程学报 | 被引量 : 0次 | 上传用户:ztt399
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用等离子体电化学法成功制备出银纳米颗粒,并通过局域表面等离子共振效应对颗粒的生长过程进行实时监测,研究了表面活性剂的浓度、种类和前驱物浓度对银纳米颗粒制备的影响.研究结果表明:增大前驱物或表面活性剂浓度对Ag+还原均有促进作用;与聚乙烯吡络烷酮(PVP)和十六烷基三甲基溴化铵(CTAB)相比较,十二烷基硫酸钠(SDS)作为表面活性剂,在相同时间内,生成的银纳米颗粒数量更多,尺寸和形状分布更均匀.
其他文献
针对汽轮机转子轮盘的受力特点,以非对称载荷下材料的瞬态应力应变响应为基础,在内变量理论框架下,建立起某型汽轮机轮盘材料的率无关循环塑性本构模型;并结合局部应力应变法,进一步建立了基于混合硬化本构模型(N-5 L1)描述平均应力松弛行为的汽轮机轮盘榫槽疲劳寿命预测方法.通过与实验结果相比较,表明混合硬化本构模型能够较好地模拟脉动加载下转子轮盘材料的循环应力应变响应及平均应力松弛行为,由此建立的寿命预测方法可对轮盘榫槽进行较为准确的疲劳寿命预测(与试验寿命误差总体落在1.5倍分散带以内),明显优于基于平均应力
本研究以煤气化炉渣为主要原料,煤化工高盐废水替代自来水为拌合剂,辅以少量的Ca(OH)2制备了煤气化炉渣基胶凝材料,研究了高盐废水掺量和养护制度对煤气化炉渣基胶凝材料的抗压强度的影响,并借助X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和扫描电子显微镜(SEM)等技术手段分析材料的性能影响机理.结果表明:高盐废水辅助Ca(OH)2激发的煤气化炉渣基胶凝材料的抗压强度随废水掺量的增加,呈先增加后减少规律;蒸汽养护优于常温养护,蒸汽养护的试件28 d抗压强度可达到14 MPa,与室温养护相比提高了2
为了探索厨余垃圾再利用的新途径,首次以厨余白菜为原料通过炭化、化学活化法制备了白菜活性炭(CCAC)应用于超级电容器.利用紫外-可见吸收光谱(UV-Vis)、氮气吸脱附、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)对其结构和组成进行了表征.结果显示CCAC具有规整的蜂窝状纳米多孔结构和丰富的官能团.三电极体系中,在不同浓度KOH电解液中测试了CCAC电极的电化学性能.结果表明CCAC电极在6 M KOH电解液中的比电容最高,在0.5 A·g-1时为357 F·g-1,并且
为解决路基采空区塌陷治理,以及煤矸石资源化利用的难题,分析了物理活化对煤矸石胶凝活性的作用规律,利用煤矸石协同矿粉制备路基充填材料,并对其流变特性、凝结时间、抗压强度、吸水率等工作性能进行测试.实验结果表明:随煤矸石掺量的增加,浆液流动度增大,凝结时间延长,结石体强度逐渐降低.当煤矸石掺量为30%~40%时,煤矸石-矿粉(CG-BFS)体系性能最好,结石体的28 d强度高于P.O32.5水泥,吸水率小于30%,满足路基充填材料的技术要求.
为研究不同尺度纤维对混凝土耐久性的影响,借助压汞法技术测定多尺度聚丙烯纤维混凝土内部孔隙的孔径大小及分布情况,通过孔径分布、最可几孔径、平均孔径等孔隙特征参数的变化情况,探究多尺度聚丙烯纤维在抗渗试验、抗硫酸盐侵蚀循环试验、抗冻融试验中对混凝土耐久性的影响.研究结果表明:不同尺度聚丙烯纤维的掺入,均使得混凝土内部多害孔和有害孔含量明显减少,少害孔与无害孔的含量大幅增加;混掺纤维的掺入可以进一步减小最可几孔径及平均孔径大小,缓解混凝土在耐久性试验中的劣化进程.
以煤矸石为原料,分别引入α-Al2 O3、工业氧化铝、氢氧化铝调整原料配比,以干压成型法制备莫来石陶瓷,研究了铝源和煅烧温度对莫来石陶瓷性能的影响.研究表明:铝硅比对莫来石生成量及制品比热容具有重要作用;随着煅烧温度的提高,试样致密化程度高,力学强度增大,比热容升高;适当延长保温时间会促进晶体发育.以氢氧化铝为铝源,铝硅比为1.85,1600℃烧结保温2 h时,试样综合性能最优,体积密度为2.03 g/cm3,耐压强度和抗折强度分别为47.75和6.9 MPa,热震循环3次后,抗折强度为1.96 MPa,
以牡蛎壳为原料,对其物相组成、结构等进行分析,然后将牡蛎壳进行煅烧,考察煅烧工艺对于产物氧化钙的活性、有效钙含量、白度以及微观结构等性能的影响,最后将煅烧产物进行消化和碳化,制备纳米碳酸钙.研究结果表明,牡蛎壳中碳酸钙为方解石晶型,含量高达95.87%,是一种优质的海洋生物碳酸钙资源.牡蛎壳煅烧过程中,随着煅烧温度的提高和保温时间的延长,产物氧化钙晶粒逐渐长大;进一步提高煅烧温度或延长保温时间,氧化钙晶粒间产生明显粘结,发生过烧现象,活性下降;当煅烧温度为1000℃,保温时间为120 min时,产物氧化钙
采用静电纺丝和PEO模板相结合加工制备了具有超疏水性能的PVDF多孔纳米纤维.通过扫描电镜(SEM)观察所制备的PVDF纤维具有均匀微纳米二级孔道显微结构,测得该多孔纳米纤维表面接触角高达158°,呈现良好的超疏水特性.研究发现,将PVDF多孔纳米纤维作为溢油吸附材料具有良好的吸油效能,其对润滑油、柴油、植物油和汽油的吸油率分别高达24.2、11.8、14.0和8.4 g/g,且具有良好的重复使用性能.
随着石油资源的枯竭,生物基可降解高分子材料的研究热度正逐步上升.聚乳酸(PLA)由于其来源广泛,受到了人们的关注,但由于其韧性低,应用范围受限,故有必要寻找一种生物基增韧剂对PLA进行改性.腰果酚(CD)由于其广泛的生物质来源及特殊的化学结构成为这种改性剂可供选择的生物质助剂.本研究利用化学合成的方法制得环氧化腰果酚(ECD),并对产物进行微观结构表征.而后将ECD与PLA熔融共混,成功研制出了一种具有超高韧性的新型聚乳酸塑料,研究了不同ECD含量对PLA热稳定性、结晶性能以及力学性能的影响.研究结果表明
本研究对2根微珠泡沫柱及5根玻璃纤维复合材料(GFRP)约束微珠泡沫组合柱开展准静态轴压试验,探讨了GFRP层数、横向纤维与纵向纤维比例、泡沫密度等参数对组合柱极限承载力和吸能效应的影响,并与静态试验结果进行对比,研究不同加载速率对构件受压性能的影响规律.结果表明:准静态压缩作用下GFRP层数和泡沫密度的增加均提高了构件的承载能力和吸能特性;而纤维横向与纵向比例的增加能提高构件的极限承载力,但对吸能影响较小.增大加载速率,组合柱的破坏范围更大,泡沫压碎更充分,因此准静态压缩作用下组合柱的极限承载力和吸能均