论文部分内容阅读
摘要:本文根据索罗余值法与柯布—道格拉斯生产函数,以改革开放以来的四川省历年GDP作为总产出,社会就业总人数作为劳动力投入,并细致估算了1978年—2013年四川省的资本存量,结合相关实证数据,利用Eviews6软件进行回归,探讨了资本因素,劳动力因素以及TFP对四川省经济增长的贡献度,结果表明资本要素的投入是推动四川省经济增长的主要动力,而TFP对四川经济增长的贡献率还处于较低的水平,经济增长对要素投入的依赖程度远大于技术进步,属于 “粗放型”经济增长。
关键词:全要素生产率(TFP);资本存量;索罗余值法
一、引言
全要素生产率(Total Factor Productivity,简称TFP)又称“索罗余值”,最早是由美国经济学家罗伯特.索罗(Robert M.solow)提出,是衡量单位总投入的总产量的生产率指标,即总产量与全部要素投入量之比。目前,TFP已经成为分析经济增长源泉的重要工具,也是政府制定长期可持续增长政策的重要依据,它对经济增长贡献的大小在一定程度上反映了经济增长质量的优劣(江苏省社会科学院课题组,2008),如由要素投入资本和劳动的增加引起的产出增长属于“粗放型”的经济增长;有全要素生产率的提高引起的产出的增长属于“集约型”的经济增长。
本文就四川省经济健康快速发展的实际,运用索罗余值法与柯布—道格拉斯生产函数,以改革开放以来的四川省历年GDP作为总产出,社会就业总人数作为劳动力投入,细致估算了1978年—2013年四川省的资本存量,并结合相关实证数据,利用Eviews6软件进行回归,对四川经济全要素生产率的变化及其对经济增长的贡献度进行实证研究,分析四川省经济增长的动力,为四川省经济的可持续发展提供政策建议。
二、模型设定
本文分析的基本思路是将生产要素简化为劳动和资本两项,给定生产函数,运用索罗余值法,用产出增长率减去各要素增长率后的残差来测算全要素生产率增长,因此,文中采用索罗经济增长模型中所使用的生产函数,即柯布—道格拉斯(Cobb-Douglas)生产函数模型,设江苏省经济生产函数为:
(1)
其中,其中乘数因子A(t)是一段时间内技术变化的累积效应,在索洛模型中将其称为“索洛剩余”(solow residual),Y(t)为现实产出,K(t) 为资本存量,L(t)为劳动力投入量,α、β分别为资本产出弹性和劳动产出弹性,为将此生产函数线性化,两边同时取自然对数得:
(2)
其中ε(t)为误差项,因为索罗经济增长模型关于规模收益不变和希克斯中性技术进步的要求,α+β必须等于1,但在现实经济中技术进步是广泛存在的,因此α+β不一定等于1,所以应对α和β进行正规化处理,即令:
(3)
通过对(2)式的回归和对(3)式的处理,可以得到资本产出弹性α*和劳动产出弹性β*,然后根据索罗(solow)的增长速度方程计算全要素生產率,公式为:
(4)
其中,GY表示经济增长率,GL 表示劳动要素投入增长率,GK表示资本要素投入增长率,GA表示全要素生产率增长率或者技术进步率,该式表明了经济增长是由资本与劳动力的增长、资本和劳动的产出弹性以及技术进步共同决定的。将上式两端同时除以GY,得出各要素对经济增长的贡献为:
(5)
GA /GY、α*GK/ GY、β*GL/ GY分别表示全要素生产率贡献率、资本投入贡献率和劳动投入贡献率。
三、数据说明
(一)、产出数据
本文采用四川省的国内生产总值(GDP)作为衡量产出的数据,考虑到时间序列中价格水平的波动,文中以1978年的不变价格计算历年GDP,以消除价格水平波动对GDP的影响。从历年《四川省统计年鉴》中可直接获得历年四川省的国内生产总值,再根据历年的GDP指数将其换算为以1978年为基期的不变价的指标数据。
(二)、劳动投入数据
劳动力投入严格意义上应该是一定时期内要素提供的“服务流量”,不仅取决于要素投入量,还与要素的利用效率以及要素的质量有关(陈瑛,2009),单纯考虑劳动力的投入数量会导致劳动力投入对经济增长的贡献比真实情况偏小。但由于国内数据的局限性,本文只能采用劳动力年末从业人数这一项指标作为劳动投入的度量。
(三)、资本投入数据
理论上资本投入量应为每年资本使用的流量,由于数据难以取得用历年的资本存量代表历年资本的投入量。本文利用永续盘存法计算资本存量,公式为:
(6)
其中Kt是第t期的期末资本存量,It是t期发生的实际投资量,从历年《四川省统计年鉴》中可直接查得按各年度当年价格统计的固定投资额。
四、模型模拟和结果分析
根据表3.1中的数据,利用Eviews6.0软件通过最小二乘法对方程(2)进行回归分析,得到四川省生产函数的估计式为:
(-0.991) (20.433) (1.678)
R2=0.9926 修正后的R2= 0.9921 F=2214
回归结果表明:生产函数的拟合优度非常理想,总体和单个参数都表现出了较高的显著性,解释力强,所以四川省1978—2013年间资本投入的产出弹性为0.70,劳动投入的产出弹性为0.81,α+β> 1,根据式(3)对其进行正规化处理得:α* = 0.46,β* = 0.54,将代入方程(4)中,可以推导出1978—2013年间四川省经济发展速度方程为:
(7)
据此,本文可以推断出1978—2013年间资本投入、劳动投入以及全要素生产率的增长率对四川省经济增长的贡献率,具体结果如表4.1,并描绘出各要素增长率的图形(图4.1),将TFP增长率与GDP增长率、K增长率及L增长率一同分析,可得出以下几个方面的结果: (一) 整体分析
从表4.1中可以计算出1978年—2013年间四川省的GDP年均增长率为15.39%,TFP在四川经济增长中的平均贡献率只有35.96%,资本投入的贡献率为58.10%,劳动投入的贡献率为5.94%[由于1981年、1992年、1998年和2009年的数据波动较大,为提高平均值的准确性,因此本文在计算各要素年均贡献率时剔除了这四年的数据。]。这说明改革开放以来,虽然四川的经济取得了巨大的发展,但资本要素的投入是经济发展的首要因素,TFP次之,但其35.96%的贡献率水平远小于发达资本主义国家的80%左右,與李斌等(2009)估算的中国1978年—2006年年均35.20%的TFP贡献率水平比较接近,劳动投入的贡献率最小,但其数值也偏高,综上所述,改革开放以来,四川省经济增长仍以投入型增长的方式为主,属于“粗放型”的经济增长。
(二)要素分析
1、劳动投入对经济增长贡献率递减
改革开放的三个十年来,劳动投入对四川省经济增长的平均贡献率由10.63%降到4.55%再到2.29%,从数据上看,劳动投入对经济发展起到的作用越来越小。2004——2013年间的平均贡献率降为22.29%,几乎没有贡献,通过图4.1中所显示的劳动要素增长率趋势我们可以看出四川省就业人口近年来较低的增长率以及增长率的下降是形成此现象的主要原因。
2、资本投入对经济增长的贡献率整体较高,但也呈现缓慢递减趋势
从表4.1的数据可以算出1979年—1990年资本投入对四川省经济增长的贡献率为79.59%,1991年—2000年为73.04%,2001—2013年为66.67%,说明改革开放以来,资本投入对四川省的经济增长一直发挥着重要作用,但对经济增长的贡献率也呈现出缓慢递减的趋势。图4.1也显示了同时期的资本投入的增长率都远高于劳动和TFP的增长率,说明四川省仍把资本投入作为发展经济的首要手段,经济增长还是较依赖于资本要素的投入,四川经济仍属于投入型的增长方式。但图中也显示了资本增长率也在缓慢递减,这与近年来四川经济注重经济发展方式的转变有着密切联系。
3、TFP对经济增长的贡献率偏低且仍处于波动阶段
从图4.1可以看出TFP对经济增长的贡献率存在较强的波动性,这在改革开放的前二十年里表现的尤为突出,而在某一个时段里(一般为三到五年),TFP的贡献率又会表现出稳定性,但其并未形成一种可供参考的趋势。从2000年开始,TFP对四川省经济增长整体起到了正向作用,同时从图4.1中可以看出TFP增长率与四川省经济运行情况整体上是比较吻合,即TFP和GDP增长率具有相似的发展变化趋势,这说明虽然四川省的经济总量的增长依然是依靠资本要素的积累实现的,但随着经济的不断发展,TFP的增长在推动经济增长中已起到越来越重要的作用。
五、结论及政策建议
本文通过对四川省改革开放以来资本存量的估算,并对1978-2013年四川省经济统计数据进行回归分析,计算四川省的资本、劳动和全要素贡献率。结果表明:资本投入对四川经济增长的贡献率一直保持着较高水平,但有缓慢递减的趋势,资本要素的投入也是是改革开放以来四川省经济飞速发展的主要动力,而TFP对经济增长的贡献率还处于较低水平,年均仅为35.96%,且波动较大,呈现出大起大落的状态,表明技术进步或科技创新对全省经济增长的影响较弱,TFP的增长率和贡献率还有待提高。全省的经济增长依然依靠投入型增长的方式,属于“粗放型”的经济增长。从图4.1中可以看出TFP增长率与四川省经济运行情况整体上比较吻合,这表明TFP开始逐步成为国民经济增长的主要因素,因此,在资本稀缺和劳动力丰裕的现状下,维持四川省经济增长的关键在于继续推进改革,在工业化和城市化推进的基础上,通过技术引进,自主创新提高整体技术水平,在现有的基础上制定各种有利政策大力促进科学技术进步,优化资源配置,加快科技成果转换率,最终达到经济增长方式由“投入型”到“集约型”的转变,才是保证四川省经济增长的长远之路。
参考文献:
[1]Heru Margono and Subhash C. Sharma. Efficiency and productivity analyses of Indonesian manufacturing industries[J]. Journal of Asian Economics , 2006,17(6).
关键词:全要素生产率(TFP);资本存量;索罗余值法
一、引言
全要素生产率(Total Factor Productivity,简称TFP)又称“索罗余值”,最早是由美国经济学家罗伯特.索罗(Robert M.solow)提出,是衡量单位总投入的总产量的生产率指标,即总产量与全部要素投入量之比。目前,TFP已经成为分析经济增长源泉的重要工具,也是政府制定长期可持续增长政策的重要依据,它对经济增长贡献的大小在一定程度上反映了经济增长质量的优劣(江苏省社会科学院课题组,2008),如由要素投入资本和劳动的增加引起的产出增长属于“粗放型”的经济增长;有全要素生产率的提高引起的产出的增长属于“集约型”的经济增长。
本文就四川省经济健康快速发展的实际,运用索罗余值法与柯布—道格拉斯生产函数,以改革开放以来的四川省历年GDP作为总产出,社会就业总人数作为劳动力投入,细致估算了1978年—2013年四川省的资本存量,并结合相关实证数据,利用Eviews6软件进行回归,对四川经济全要素生产率的变化及其对经济增长的贡献度进行实证研究,分析四川省经济增长的动力,为四川省经济的可持续发展提供政策建议。
二、模型设定
本文分析的基本思路是将生产要素简化为劳动和资本两项,给定生产函数,运用索罗余值法,用产出增长率减去各要素增长率后的残差来测算全要素生产率增长,因此,文中采用索罗经济增长模型中所使用的生产函数,即柯布—道格拉斯(Cobb-Douglas)生产函数模型,设江苏省经济生产函数为:
(1)
其中,其中乘数因子A(t)是一段时间内技术变化的累积效应,在索洛模型中将其称为“索洛剩余”(solow residual),Y(t)为现实产出,K(t) 为资本存量,L(t)为劳动力投入量,α、β分别为资本产出弹性和劳动产出弹性,为将此生产函数线性化,两边同时取自然对数得:
(2)
其中ε(t)为误差项,因为索罗经济增长模型关于规模收益不变和希克斯中性技术进步的要求,α+β必须等于1,但在现实经济中技术进步是广泛存在的,因此α+β不一定等于1,所以应对α和β进行正规化处理,即令:
(3)
通过对(2)式的回归和对(3)式的处理,可以得到资本产出弹性α*和劳动产出弹性β*,然后根据索罗(solow)的增长速度方程计算全要素生產率,公式为:
(4)
其中,GY表示经济增长率,GL 表示劳动要素投入增长率,GK表示资本要素投入增长率,GA表示全要素生产率增长率或者技术进步率,该式表明了经济增长是由资本与劳动力的增长、资本和劳动的产出弹性以及技术进步共同决定的。将上式两端同时除以GY,得出各要素对经济增长的贡献为:
(5)
GA /GY、α*GK/ GY、β*GL/ GY分别表示全要素生产率贡献率、资本投入贡献率和劳动投入贡献率。
三、数据说明
(一)、产出数据
本文采用四川省的国内生产总值(GDP)作为衡量产出的数据,考虑到时间序列中价格水平的波动,文中以1978年的不变价格计算历年GDP,以消除价格水平波动对GDP的影响。从历年《四川省统计年鉴》中可直接获得历年四川省的国内生产总值,再根据历年的GDP指数将其换算为以1978年为基期的不变价的指标数据。
(二)、劳动投入数据
劳动力投入严格意义上应该是一定时期内要素提供的“服务流量”,不仅取决于要素投入量,还与要素的利用效率以及要素的质量有关(陈瑛,2009),单纯考虑劳动力的投入数量会导致劳动力投入对经济增长的贡献比真实情况偏小。但由于国内数据的局限性,本文只能采用劳动力年末从业人数这一项指标作为劳动投入的度量。
(三)、资本投入数据
理论上资本投入量应为每年资本使用的流量,由于数据难以取得用历年的资本存量代表历年资本的投入量。本文利用永续盘存法计算资本存量,公式为:
(6)
其中Kt是第t期的期末资本存量,It是t期发生的实际投资量,从历年《四川省统计年鉴》中可直接查得按各年度当年价格统计的固定投资额。
四、模型模拟和结果分析
根据表3.1中的数据,利用Eviews6.0软件通过最小二乘法对方程(2)进行回归分析,得到四川省生产函数的估计式为:
(-0.991) (20.433) (1.678)
R2=0.9926 修正后的R2= 0.9921 F=2214
回归结果表明:生产函数的拟合优度非常理想,总体和单个参数都表现出了较高的显著性,解释力强,所以四川省1978—2013年间资本投入的产出弹性为0.70,劳动投入的产出弹性为0.81,α+β> 1,根据式(3)对其进行正规化处理得:α* = 0.46,β* = 0.54,将代入方程(4)中,可以推导出1978—2013年间四川省经济发展速度方程为:
(7)
据此,本文可以推断出1978—2013年间资本投入、劳动投入以及全要素生产率的增长率对四川省经济增长的贡献率,具体结果如表4.1,并描绘出各要素增长率的图形(图4.1),将TFP增长率与GDP增长率、K增长率及L增长率一同分析,可得出以下几个方面的结果: (一) 整体分析
从表4.1中可以计算出1978年—2013年间四川省的GDP年均增长率为15.39%,TFP在四川经济增长中的平均贡献率只有35.96%,资本投入的贡献率为58.10%,劳动投入的贡献率为5.94%[由于1981年、1992年、1998年和2009年的数据波动较大,为提高平均值的准确性,因此本文在计算各要素年均贡献率时剔除了这四年的数据。]。这说明改革开放以来,虽然四川的经济取得了巨大的发展,但资本要素的投入是经济发展的首要因素,TFP次之,但其35.96%的贡献率水平远小于发达资本主义国家的80%左右,與李斌等(2009)估算的中国1978年—2006年年均35.20%的TFP贡献率水平比较接近,劳动投入的贡献率最小,但其数值也偏高,综上所述,改革开放以来,四川省经济增长仍以投入型增长的方式为主,属于“粗放型”的经济增长。
(二)要素分析
1、劳动投入对经济增长贡献率递减
改革开放的三个十年来,劳动投入对四川省经济增长的平均贡献率由10.63%降到4.55%再到2.29%,从数据上看,劳动投入对经济发展起到的作用越来越小。2004——2013年间的平均贡献率降为22.29%,几乎没有贡献,通过图4.1中所显示的劳动要素增长率趋势我们可以看出四川省就业人口近年来较低的增长率以及增长率的下降是形成此现象的主要原因。
2、资本投入对经济增长的贡献率整体较高,但也呈现缓慢递减趋势
从表4.1的数据可以算出1979年—1990年资本投入对四川省经济增长的贡献率为79.59%,1991年—2000年为73.04%,2001—2013年为66.67%,说明改革开放以来,资本投入对四川省的经济增长一直发挥着重要作用,但对经济增长的贡献率也呈现出缓慢递减的趋势。图4.1也显示了同时期的资本投入的增长率都远高于劳动和TFP的增长率,说明四川省仍把资本投入作为发展经济的首要手段,经济增长还是较依赖于资本要素的投入,四川经济仍属于投入型的增长方式。但图中也显示了资本增长率也在缓慢递减,这与近年来四川经济注重经济发展方式的转变有着密切联系。
3、TFP对经济增长的贡献率偏低且仍处于波动阶段
从图4.1可以看出TFP对经济增长的贡献率存在较强的波动性,这在改革开放的前二十年里表现的尤为突出,而在某一个时段里(一般为三到五年),TFP的贡献率又会表现出稳定性,但其并未形成一种可供参考的趋势。从2000年开始,TFP对四川省经济增长整体起到了正向作用,同时从图4.1中可以看出TFP增长率与四川省经济运行情况整体上是比较吻合,即TFP和GDP增长率具有相似的发展变化趋势,这说明虽然四川省的经济总量的增长依然是依靠资本要素的积累实现的,但随着经济的不断发展,TFP的增长在推动经济增长中已起到越来越重要的作用。
五、结论及政策建议
本文通过对四川省改革开放以来资本存量的估算,并对1978-2013年四川省经济统计数据进行回归分析,计算四川省的资本、劳动和全要素贡献率。结果表明:资本投入对四川经济增长的贡献率一直保持着较高水平,但有缓慢递减的趋势,资本要素的投入也是是改革开放以来四川省经济飞速发展的主要动力,而TFP对经济增长的贡献率还处于较低水平,年均仅为35.96%,且波动较大,呈现出大起大落的状态,表明技术进步或科技创新对全省经济增长的影响较弱,TFP的增长率和贡献率还有待提高。全省的经济增长依然依靠投入型增长的方式,属于“粗放型”的经济增长。从图4.1中可以看出TFP增长率与四川省经济运行情况整体上比较吻合,这表明TFP开始逐步成为国民经济增长的主要因素,因此,在资本稀缺和劳动力丰裕的现状下,维持四川省经济增长的关键在于继续推进改革,在工业化和城市化推进的基础上,通过技术引进,自主创新提高整体技术水平,在现有的基础上制定各种有利政策大力促进科学技术进步,优化资源配置,加快科技成果转换率,最终达到经济增长方式由“投入型”到“集约型”的转变,才是保证四川省经济增长的长远之路。
参考文献:
[1]Heru Margono and Subhash C. Sharma. Efficiency and productivity analyses of Indonesian manufacturing industries[J]. Journal of Asian Economics , 2006,17(6).