论文部分内容阅读
固定摄像机目标提取多以高斯混合模型为背景模型,在检测运动缓慢、间歇停滞的目标时会出现前景目标空洞的问题。为此,提出一种能够适应目标间歇停滞的多模型协同目标提取方法。采用高斯混合模型进行背景学习,通过光线检测模型和场景状态检测模型协同控制背景适时更新,利用阴影检测模型剔除阴影。实验结果表明,与Kaew Tra Kul Pong P方法相比,该方法能较完整地提取到目标轮廓,且单帧处理时间较少。