A quantitative evaluation of the factors influencing the air-sea carbon dioxide transfer velocity

来源 :Acta Oceanologica Sinica | 被引量 : 0次 | 上传用户:wwwunix
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The numerous factors influencing the air-sea carbon dioxide(CO_2) transfer velocity have been discussed for many years, yet the contributions of various factors have undergone little quantitative estimation. To better understand the mechanism of air-sea transfer, the effects of different factors are discussed on the air-sea transfer velocity and the various parametric models describing the phenomenon are classified and compared.Then, based on GAS EX-98 and ASGAMAGE data, wind models are evaluated and the effects of some factors are discussed quantitatively, including bubbles, waves, wind and so on by considering their interaction through a piecewise average approach. It is found that the air-sea CO_2 transfer velocity is not only the function of the wind speed, but is also affected by bubbles, wave parameters and other factors. Stepwise and linear regressions are used. When considering the wind speed, bubbles mediated and the significant wave height, the root mean square error is reduced from 34.53 cm/h to 16.96 cm/h. Discussing the various factors quantitatively can be useful in future assessments of a large spatial scale and long-term air-sea CO_2 flux and global change. The numerous factors influencing the air-sea carbon dioxide (CO_2) transfer velocity have been discussed for many years, yet the contributions of various factors have undergone little quantitative estimation. To better understand the mechanism of air-sea transfer, the effects of different factors are discussed on the air-sea transfer velocity and the various parametric models describing the phenomenon are classified and compared. Then, based on GAS EX-98 and ASGAMAGE data, wind models are evaluated and the effects of some factors are discussed quantitatively, including , waves, wind and so on by considering their interaction through a piecewise average approach. It is found that the air-sea CO_2 transfer velocity is not only the function of the wind speed, but also also affected by bubbles, wave parameters and other factors . Stepwise and linear regressions are used. When considering the wind speed, bubbles mediated and the significant wave height, the root mean square error is reduc ed from 34.53 cm / h to 16.96 cm / h. Discussing the various factors quantitatively can be useful in future assessments of a large spatial scale and long-term air-sea CO_2 flux and global change.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
The Regional Ocean Modeling System(ROMS) is used to study the summer circulation in the southwestern Yellow Sea(SWYS). The modeled currents show good agreement
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea(SCS) is investigated based on several objectively analyzed data se
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 200