Assessment of structural brain changes in patients with type 2 diabetes mellitus using the MRI-based

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:zy3201869
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Patients with type 2 diabetes mellitus (T2DM) often have cognitive impairment and structural brain abnormalities. The magnetic resonance imaging (MRI)-based brain atrophy and lesion index can be used to evaluate common brain changes and their correlation with cognitive function, and can therefore also be used to reflect whole-brain structural changes related to T2DM. A total of 136 participants (64 men and 72 women, aged 55–86 years) were recruited for our study between January 2014 and December 2016. All participants underwent MRI and Mini-Mental State Examination assessment (including 42 healthy control, 38 T2DM without cognitive impairment, 26 with cognitive impairment but without T2DM, and 30 T2DM with cognitive impairment participants). The total and sub-category brain atrophy and lesion index scores in patients with T2DM with cognitive impairment were higher than those in healthy controls. Differences in the brain atrophy and lesion index of gray matter lesions and subcortical dilated perivascular spaces were found between non-T2DM patients with cognitive impairment and patients with T2DM and cognitive impairment. After adjusting for age, the brain atrophy and lesion index retained its capacity to identify patients with T2DM with cognitive impairment. These findings suggest that the brain atrophy and lesion index, based on T1-weighted and T2-weighted imaging, is of clinical value for identifying patients with T2DM and cognitive impairment. Gray matter lesions and subcortical dilated perivascular spaces may be potential diagnostic markers of T2DM that is complicated by cognitive impairment. This study was approved by the Medical Ethics Committee of University of South China (approval No. USC20131109003) on November 9, 2013, and was retrospectively registered with the Chinese Clinical Trial Registry (registration No. ChiCTR1900024150) on June 27, 2019.
其他文献
The concept of neural plasticity accounts for the now well clarified brain ability to react to internal and external stimuli by transforming its structure and function. The translation of whatever experience in specific electrical signals that run through
期刊
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute
Hypothermia is an important protective strategy against global cerebral ischemia following cardiac arrest. However, the mechanisms of hypothermia underlying the changes in different regions and connections of the brain have not been fully elucidated. This
After central nervous system (CNS) injury, severed axons fail to regenerate and their disconnections to the original targets result in permanent functional deficits in patients (Mahar and Cavalli, 2018). Both the diminished intrinsic regenerative capacity
期刊
Retinal ganglion cells (RGCs) are the sole output neurons of the retina that project long axons and transmit visual information to the brain. The degeneration of RGCs leads to irreversible vision loss in a variety of pathological states, including excitot
期刊
Macrophages are immune cells of myeloid origin and are present in almost all tissues. They perform a wide variety of functions contributing to tissue development, homeostasis, pathogenesis, and repair (Wynn et al., 2013). Strikingly, macrophages residing
期刊
Glial cells play an important role in signal transduction, energy metabolism, extracellular ion homeostasis and neuroprotection of the central nervous system. However, few studies have explained the potential effects of exosomes from glial cells on centra
The aging of society has arrived, and is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer\'s and Parkinson\'s diseases (Feigin et al., 2020). Such diseases, particularly Alzheimer\'s disea
期刊
Epidural stimulation of the spinal cord is a promising technique for the recovery of motor function after spinal cord injury. The key challenges within the reconstruction of motor function for paralyzed limbs are the precise control of sites and parameter
Iron accumulation and neuroinflammation are cardinal features of many neurodegenerative diseases (Urrutia et al., 2021). However, the hierarchy in the pathogenic mechanisms and the molecular connections between these processes are still obscure. In this p
期刊