论文部分内容阅读
针对道路交通事故预测具有随机波动性较大、信息量较少和非线性数据序列预测的特点,引入支持向量回归机(SVR),建立基于SVR的道路交通事故预测模型。通过实例计算,证明基于SVR的道路交通事故预测模型具备非线性、所需数据资料较少、建模简单和计算快捷等优点,同时与RBF神经网络预测模型相比,该模型的预测精度高、泛化能力强,更适用于道路交通事故预测。