探究极点极线,应用强化思考

来源 :数学教学通讯·高中版 | 被引量 : 0次 | 上传用户:exia0654
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  [摘  要] 极点极线定理定义在圆锥曲线问题中有着广泛的应用,该定理对于学生而言相对较为陌生,但深刻理解,灵活应用,可显著提升解题效率,因此深入探究有着现实的意义. 文章从问题背景、知识定义、定理规律、应用强化等方面深入探究,并提出相应的教学建议.
  [关键词] 极点;极线;圆锥曲线;定理;定义;应用
  极点极线结论是研究圆锥曲线内在性质的基本理论,虽然在高中教材中体现得并不突出,但其作为圆锥曲线的基本特征,在高考解题中有着广泛的应用,利用该结论可挖掘问题本质,快速确定解题方向,提高解题效率. 该结论备受命题人青睐的原因有两点:一是具有高等数学的背景,拓展性强;二是可以全面考查学生的数学思维,以及推理运算能力,下面对该结论深入探究.
  [?] 提出问题
  问题:已知过抛物线C:y2=4x的焦点的直线与抛物线相交于点A和B,抛物线在点A和B的切线交于点P,则点P的轨迹为________.
  解析:探究抛物线切线交点的轨迹,方法有很多,下面探究其中的两种.
  传统方法:设直线AB的方程为x=my+1,交点A(x,y),B(x,y)(y>0,y<0),联立直线AB与抛物线的解析式,整理可得y2-4my-4=0. 由韦达定理可得y+y=4m,yy=-4,则有y=2,y′=,可知抛物线在点A的切线方程为y=x+①,同理可求出抛物线在点B处的切线方程为y=x+②,联合①②可得
  -
  x=-,从而有x==-1,所以点P的轨迹方程为x=-1.
  通性通法:可直接设A(x,y),B(x,y),P(x,y),则抛物线在点A处的切线方程为yy=2x+2x,因为点P在该切线上,故可得yy=2x+2x. 分析可知点A和B均满足方程:yy=2x+2x,即该方程就为直线AB. 又知直线AB过抛物线焦点F(1,0),所以2x+2=0,可得x0=-1,从而可知点P的轨迹方程为x0=-1.
  [?] 问题探究
  另外,上述关于点P的轨迹,由轨迹方程可知其轨迹实则为抛物线的准线,利用该方法探究椭圆问题也可得到类似的结论,实际上问题中隐含了圆锥曲线的极点与极线知识,利用该知识可高效解决问题,下面深入探究.
  1. 关于极点与极线的定义
  视角一:几何定义
  如图1所示,点P是圆锥曲线外的一点,过点P引出两条割线,与圆锥曲线依次相交于点E,F,G,H四点,连接EH,FG,两线交点设为点N;再连接EG和FH,两线交点设为点M,其中直线MN就为点P对应的极线. 如果点P位于圆锥曲线上,则过点P的切线就为该点的极线.
  同理可知PM为点N对应的极线,点M对应的极线则为PN,所以MNP可称为自极三点形. 若连接MN,与圆锥曲线相交于点A和B,则PA和PB就为圆锥曲线的两条切线. 同时上述作图过程也是两切线交点P对应极线的作法.
  视角二:代数定义
  已知圆锥曲线Γ:Ax2+Cy2+2Dx+2Ey+F=0(A,C不全为0),则称点P(x,y)和直线l:Axx+Cyy+D(x+x)+E(y+y)+F=0是圆锥曲线Γ的一对极点和极线. 对于上述方程,在圆锥曲线中可用xx替换其中的x2,用替换x;同时用yy替换其中的y2,用替换y,可得到点P(x,y)的极线方程. 以椭圆标准方程+=1为例,点P(x,y)对应的极线方程为+=1.
  2. 关于极点与极线的结论
  极点与极线有一些常用的定理结论,合理利用可简化解题过程,具体如下.
  定理1:當点P位于圆锥曲线Γ上时,则极线l是曲线Γ在点P处的切线;当点P位于Γ外时,则极线l是曲线Γ从点P引出的两条切线的切点连线所确定的直线;当点P在Γ内部时,则极线l是曲线Γ过点P的弦线两端点处的切线交点的轨迹.
  定理2:如果圆锥曲线中存在一些极线共点于点P,则这些极线相应的极点共线于点P对应的切线,逆推同样适用.
  【教材回顾】
  极点和极线充分反映了圆锥曲线的基本性质,虽然教材中没有对极点和极线进行鲜明的定义,但在教材的解析几何问题中有一定的体现. 如下面一道例题,利用极点与极线的定理结论可较为简捷地完成证明.
  例题:过抛物线y2=2px的焦点的一条直线与此抛物线相交于两点,若两个交点的纵坐标分别为y,y,证明:yy=-p2.
  证明:由抛物线解析式可得焦点F
  ,0
  ,直线l与抛物线的交点可设为点A
  ,y
  ,B
  ,y
  ,三点对应的极线方程分别为x=-,yy=p
  +x
  ,yy=p
  +x
  . 由于点A,F,B三点共线,根据极点与极线的定理2可知,三点对应的三条极线共点,将x=-代入后两式中,可得yy=y-,yy=y-,两式相除可得=,整理可得yy= -p2,得证.
  评析:例题是一道关于抛物线与直线相交的证明题,可以采用传统的方程联立的方法,也可利用极点极线的知识来求解. 上述充分利用了极点与极线的定义,求出所涉点的极线,并利用对应的定理结论,直接推理出关键三点所对的极线共点,进而简化变形证明结论.
  【应用探究】
  极点与极线的知识结论虽然不是高中课标的教学内容,也不是高考大纲的重点考查点,但是作为圆锥曲线重要的基本特征,在实际考题中有着一定的应用,也常作为高考命题背景出现在解析几何压轴题中,下面对其知识应用进行深入探究.
  问题:已知椭圆M的方程为:+=1(a>b>0),其离心率为,焦距为2,若斜率为k的直线与椭圆M相交于A,B两点,试回答下列问题.   (1)求椭圆M的方程;
  (2)若k=1,求AB的最大值;
  (3)已知点P(-2,0),直线PA与椭圆M的另一交点为C,直线PB与椭圆的另一交点为D,若点C,D和Q
  -,
  共线,试求k的值.
  解析:(1)M的标准方程为+y2=1.
  (2)设直线AB的方程为y=x+m,联立直线与椭圆的方程,整理可得4x2+6mx+3m2-3=0. 由Δ>0可得m2<4,设交点A(x,y),B(x,y),由韦达定理可得x+x= -,xx=,则AB=·
  x
  -x=,易得当m=0时,AB可取得最大值,且最大值为.
  (3)过点P作椭圆M的两条切线,设切点分别为点G和H,连接GH,设与AC的交点为S,与BD的交点为T,再设直线AB与CD的交点为点R,如图3所示.
  由极点与极线的定理可知,点P关于椭圆M的极线为GH. 将点P(-2,0)代入+=1中,可求得直线GH的方程为x=-,与椭圆M方程联立,可解得点G的坐标为
  -,
  ,从而可求得直线PG的斜率为k=1. 根据极点与极线的性质可知(PS,CA)=-1,又因点Q
  -,
  ,点P(-2,0),可知点Q为线段PG的中点. 设点E是直線PG的无穷远点,结合相关知识可得(PG,QE)=-1,即有(PS,CA)=-1=(PG,QE),于是直线GS,QC,AE共点. 由于直线GS,QC相交于点R,因此直线AR的无穷远点也是点E,所以可证AB∥PG,即k=k=1.
  极点与极线在圆锥曲线问题中有着广泛的应用,上述充分探究了知识定义、定理,并结合考题展示了极点与极线的知识应用,从而可感知到极点与极线知识内容的丰富性,深入探究极点与极线知识,不仅可以拓宽学生的知识维度,还可以拓展学生的思维,培养学生分析数学内在关系、挖掘定理关联的思维习惯.
  随着课改的推行,命题教师越发注重初、高中数学的衔接,关注高等数学的知识素材,高考试题中出现了一些拓展性极强的综合性试题,问题难度虽大,但解法的拓展性极强. 高观点的角度看待问题,深入研究问题的本质,挖掘其中的知识规律,才能真正理解问题内涵,找到解决问题的本源解法,这也是考题探究、定理探究的目的所在.
  而在实际教学中,提出以下几点建议:采用知识探究的方式,引导学生循序渐进地了解定理背景,理解定理定义,总结知识规律,强化定理应用,形成一个系统的闭环探究过程;教学中要注重学生的思维培养,关注学生的思维活动,以学生为主体,充分发挥教师的引导作用,让学生充分思考,形成独立的思维习惯;合理变式探究,定理探究应注重应用理解,立足定理开展应用强化,让学生掌握定理的应用方法、步骤,同时可对比考题的传统解法,让学生感知定理规律的价值.
其他文献
《普通高中数学课程标准(2017年版2020年修订)》指出“数学在形成人的理性思维、科学精神和促进个人智力发展的过程中发挥着不可替代的作用.数学素养是现代社会每一个人应该具备的基本素养.”数学核心素养综合体现在“发现与提出问题,分析与解决问题”的过程中,核心素养的培养是需要教师以知识发展为线索的学习活动,知识发展是需要以知识深入探究为原则的学习活动,知识探究是需要以学生为主体的学习活动.文章以一道椭圆习题的探究教学为例,探讨在探究学习中如何提高学生的数学核心素养.
[摘 要] 今天的高中数学教学面临着核心素养培育的需要,而核心素养的关键要素之一就是关键能力. 自主学习能力可以视作是关键能力的重要组成部分. 高中数学教学中强调核心素养的培育离不开自主学习能力的培养,需要从宏观的核心素养概念与微观的数学学科教学两个方面来进行理解. 从核心素养概念的角度来看,核心素养的培育对深化我国课程改革并最终提升国际竞争力具有重要意义. 从数学学科教学的角度来看,需要学生借助
[摘 要] 新课改背景下,着力培养学生的数学建模素养是高中数学教学的重要任务,认为在教学中,教师不仅要在思想上加以重视,而且要把数学建模意识渗透到每堂课中,学会用数学建模的眼光看待数学教学,用数学建模的思想指导数学教学.  [关键词] 数学建模;数学教学;概念;解题;研究性  什么是数学教学的目的?在轰轰烈烈大搞高考应试教育的大背景下,数学教学的目的往往被人误解为都是为了高考这场“一次性的消费”.
[摘 要] 在教学中,要让学生“动”起来,让课堂焕发无限活力,需要教师精心地设计教学情境,营造一个充满“爱”的学习氛围,通过多种学习形式让学生学会学习、学会探究、学会合作.  [关键词] 教学情境、学习形式;学会  在教学中,部分教师认为只有“多讲”才能真正地提升课堂效率,因此忽视了对学生自主学习能力和自主探究能力的培养,在教学中也很少让学生合作和交流,使得课堂过于单调乏味,而无法让学生“动”起来
[摘 要] 信息技术为师生提供了丰富的教学资源和学习资源,以生动直观的展现方式为学生增添了多彩的学习环境,以多元互动的教学平台为学生提供实践操作的机会.推进信息技术和教学的深度融合,能提高课堂教学的有效性,帮助发展学生的学科核心素养.文章通过几个案例介绍信息技术与数学教学深度融合的尝试与实践探索.   [關键词] 信息技术;数学教学;深度融合  《普通高中数学课程标准》(2017年版)明确提出“注
对于当下的教学,都必须坚持继承与创新的思路:只有坚持继承,那当下的教学才不会与传统的教学相脱节;只有坚持创新,那当下的教学才会超越传统的教学.基本经验对于数学学科核心素养来说,是一个基础,起到的是支撑性作用:从学生学习的过程角度来看,数学概念或者规律的得出是一个建构过程;从教师教学的角度来看,任何一个内容的教学都不应当是一个空洞的过程——要么是基于学生的生活经验,要么是基于学生原有的认知基础,要么是两者的结合.
[摘 要] 分层教学是当今数学课堂教学中一种重要的教学手法. 其实施过程包括学生、目标、授课、作业与指导等方面的分层. 文章以高中数学“基本不等式”的一节课为例,对分层教学的实施过程谈一些看法与思考.  [关键词] 分层教学;数学;作业  布卢姆提出:“要给予学生充足的时间,让他们通过自己的努力获得科学的学习方法,掌握不同的学习内容[1].”这句话凸显了新课标所提倡的“因材施教”与“以人为本”的理
[摘 要] 文章研究了夹在两条直线之间的条形区域表示的“粗”直线在解决交点(零点或解)的个数问题上的应用,并在此基础上锻炼学生的创造性思维.  [关键词] “粗”直线;条形区域;零点个数  有道小学趣味题:画一条直线,把图形(如图1)分成两个三角形.  答案出乎意料,是画一条很粗的直线(如图2). 结果似乎很滑稽,与其说是数学题,不如说是脑筋急转弯,但想法确实很新奇,突破了思维定式.  其实在平时
[摘 要] 文章对一道解析几何探索性题目的解法,从同构式、曲线系、设点等不同角度进行了探究,并对问题进行了推广和引申.  [关鍵词] 解析几何;斜率;探索性问题  [?] 试题呈现  题目:(2021年深圳市二模)在平面直角坐标系xOy中,O是坐标原点,P是直线x=-2上的动点,过P作两条相异直线l和l,其中l与抛物线C:y2=4x交于A,B两点,l与C交于M,N两点,记l,l和直线OP的斜率分
[摘 要] 数学实验是高中数学教学中的重要资源,灵活运用数学实验进行教学是提升课堂教学效益的重要手段. 文章以高中数学课堂教学为研究载体,从探究兴趣、知识理解、探究效率、探究能力等几个方面进行探讨,重点阐述数学实验在高中数学探究性教学中有效运用的重要途径,以期给教育同仁带来一些帮助与参考.  [关键词] 数学实验;高中数学;探究教学;能力  实验是研究问题的一种重要手段. 高中数学探究教学中注重数