论文部分内容阅读
摘要:本文从“通过一题多解,培养学生的创新能力;通过一题的灵活多变,不断培养学生的创新素质”,阐述了在小學数学教学中,如何注重开发学生的潜能,培养学生的创新能力。
关键词:小学数学 培养 创新能力
素质教育要求我们充分尊重学生的主体性,注重开发学生的潜能,对于数学这门学科来说,其中创新能力是素质教育的核心,关键是培养学生的创造性思维能力,培养学生的创造性思维能力,这是培养新世纪新型建设人才的时代要求,也是教学的重任。
一、通过一题多解,培养学生的创新能力;
在教学中,通过多角度思考,获得多种解题途径,可拓宽学生的思路,使学生感受到数学的奥秘和情趣,培养学生的创新意识。
例1、某水泥厂去年生产水泥32400吨,今年前五个月的产量就等于去年全年的产量,照这样计算,这个水泥厂今年将比去年增产百分之几?(九年义务教育六年制小学数学第十二册)
解法一,预计今年的水泥产量为:32400÷5×12=77760,今年可比去年增产:(77760-32400)÷32400=140%。
解法二,设去年的每月的水泥产量为“1”,则去年的水泥总产量为12,今年前5个月的水泥产量即达12,今年全年的水泥产量应为:12/5×12,因此今年的水泥产量将比去年增加:(12/5×12-12)÷12=140%。或12/5×12÷12-1=140%。
解法三:同上,去年水泥总产量为12,今年前5个月的水泥产量即达12,生产同去年同样多的水泥,今年可比去年少用7(12-5)个月,如这7个月继续生产,则可比去年多增加水泥产量7,因此可得,今年的水泥产量将比去年增加:7÷5=140%。
解法四:设今年每个月的水泥产量为“1”,则今年的水泥总产量为12,因为今年5个月的水泥产量就同去年相等,因此去年的水泥总产量则为5,因此可得,今年的水泥产量将比去年增加:(12-5)÷5=140%。
解法五:设去年的水泥总产量为“1”,则去年每月的水泥产量则为1/12,今年每月的每月的水泥产量则为1/5,今年与去年每月的水泥产量比则为:1/5∶1/12,因为时间相同,因此可得,今年与去年的水泥总产量的比也为1/5∶1/12,因此可得,今年的水泥产量将比去年增加:(1/5-1/12)÷1/12=140%。
例如在学习了百分数应用题后,我出示了这样一题:“某校女生人数比男生人数少20%,问男生比女生多百分之几?”,并要求学生用不同的方法进行求解。学生在我的点拨和指导下,经过讨论,很快列出了不同的算式:(1)因为男生人数为单位“1”,因此女生人数为:1-20%=80%,因此男生比女生人数多:(1-80%)÷80%=25%。(2)同上,女生人数是男生人数的:1-20%=80%,又因为女生人数比男生人数少20%,因此可得,男生比女生人多:20%÷80%=25%。(3)同上,因为女生人数是男生人数的80%=4/5,即女生人数与男生人数的比是4∶5,,因此可得,因此男生比女生人数多:(5-4)÷4=25%。
通过一题多解不仅能拓宽学生的思维领域,增加学生的思维空间,同时通过总结,可揭示一些有规律性的东西,达到增长学生智能的目的。
二、通过一题的灵活多变,不断培养学生的创新素质
在教学中,如果能做到引导学生对命题条件、结论进行各种变换,能充分调动学生学习的积极性。
例如在学习了长方体的表面积后,我让学生归纳出了求长方体的表面积公式后,我出示长方体的实物,并演示提出如果少掉一个底面的一个面,请学生思考这时五个面的面积公式又是怎样的?如果少掉前面的一个面,这时五个面的面积公式又是怎样的?如果少掉两个底面,这时的四个面的面积公式又是怎样的?少掉了两个底面,这时实际只要求什么?那一种物体只要求出四个面?学生经过讨论,很快能说出求五个面的面积公式,并知道少掉两个底面,实际上只要求长方体的侧面积,通风管即只要求四个面。这样通过运用实物和教具,让学生在实践中通过联想,增强了学生的创新意识,培养了学生的创造性思维能力,同时也提高了学生的解题能力。
再如课本上九年义务教育六年制小学数学第十二册中的的一道思考题:“修一条公路,已修和未修长度的比是1∶3,再修300米后,已修和未修长度的比是1∶2。这条路长多少米?”
这道题有的学生求解会有一定的难度,我就先出示了这样一道题:“修一条公路,已修了全长的1/4,再修300米后,则已修了全长的1/3,这条路长多少米?”。这道题学生很快能列出算式:300÷(1/3-1/4)=3600(米)。
然后我再引导学生思考,上面一道思考题的条件是:“再修300米后,已修和未修长度的比是1∶2”,这里隐藏着一个等量关系,如果抓住这个等量关系,就可列方程解答。设已修的长度为X米,那么未修的长度为3X米。
(X+300)∶(3X-300)=l∶2
解得X=900
X+3X=900+900×3=3600(米)
答:这条路长3600米。
接着,我再引导学生,又因为公路的总米数是“不变量”,把条件“已修和未修长度的比是1∶3,再修300米后,已修和未修长度的比是1∶2”转化为:“已修长度是未修长度的1/3,再修300米,已修长度是未修长度的1/2”,如把公路全长看作单位“1”,所以可得,已修的长度就是总长度的:1/3÷(1+1/3)=1/4,再修300米后,已修的长度就是总长度的:1/2÷(1+1/2)=1/3,由此可知,300米就相当于公路全长的:(1/3-1/4),所以可列式为:300÷(1/3-1/4)=3600(米)。答:这条路有3600米。
在学生掌握了这道思考题的解答方法后,我又出示了这样一题:“修一条公路,已修长度是未修长度的是1/3,再修300米后,已修长度是未修长度的1/2。这条路长多少米?”。然后我组织学生讨论,学生在掌握了上道题的解题方法后,很快能求出公路的全长是:300÷[1/2÷(1+1/2)-1/3÷(1+1/3)]=3600(米)。
接着,我又出示了这样一题:“修一条公路,未修长度是已修长度的3倍,再修300米后,未修长度是已修长度的2倍。这条路长多少米?”。我再组织学生讨论,学生在解答了上面二题的基础上,也能很快求出这条公路的长度是:300÷[1÷(1+2)-1÷(1+3)]=3600(米)。
在长期的教学实践中,我认识到,数学教师要在课堂教学中培养学生的创造力,教师首先应创设一种民主、宽松、和谐的教学环境和教学气氛。有意识的培养学生的创新意识;善于激发学生的创造动机;发展学生的创造思维;树立学生具有创造力的个性品质。同时教师还要注意自身的知识和能力储备。教师自己能够打破传统定势,提高自身的认知水平,才能更加灵活的去引导学生的发展,更好的促进学生的发展,实现教书育人的目的
关键词:小学数学 培养 创新能力
素质教育要求我们充分尊重学生的主体性,注重开发学生的潜能,对于数学这门学科来说,其中创新能力是素质教育的核心,关键是培养学生的创造性思维能力,培养学生的创造性思维能力,这是培养新世纪新型建设人才的时代要求,也是教学的重任。
一、通过一题多解,培养学生的创新能力;
在教学中,通过多角度思考,获得多种解题途径,可拓宽学生的思路,使学生感受到数学的奥秘和情趣,培养学生的创新意识。
例1、某水泥厂去年生产水泥32400吨,今年前五个月的产量就等于去年全年的产量,照这样计算,这个水泥厂今年将比去年增产百分之几?(九年义务教育六年制小学数学第十二册)
解法一,预计今年的水泥产量为:32400÷5×12=77760,今年可比去年增产:(77760-32400)÷32400=140%。
解法二,设去年的每月的水泥产量为“1”,则去年的水泥总产量为12,今年前5个月的水泥产量即达12,今年全年的水泥产量应为:12/5×12,因此今年的水泥产量将比去年增加:(12/5×12-12)÷12=140%。或12/5×12÷12-1=140%。
解法三:同上,去年水泥总产量为12,今年前5个月的水泥产量即达12,生产同去年同样多的水泥,今年可比去年少用7(12-5)个月,如这7个月继续生产,则可比去年多增加水泥产量7,因此可得,今年的水泥产量将比去年增加:7÷5=140%。
解法四:设今年每个月的水泥产量为“1”,则今年的水泥总产量为12,因为今年5个月的水泥产量就同去年相等,因此去年的水泥总产量则为5,因此可得,今年的水泥产量将比去年增加:(12-5)÷5=140%。
解法五:设去年的水泥总产量为“1”,则去年每月的水泥产量则为1/12,今年每月的每月的水泥产量则为1/5,今年与去年每月的水泥产量比则为:1/5∶1/12,因为时间相同,因此可得,今年与去年的水泥总产量的比也为1/5∶1/12,因此可得,今年的水泥产量将比去年增加:(1/5-1/12)÷1/12=140%。
例如在学习了百分数应用题后,我出示了这样一题:“某校女生人数比男生人数少20%,问男生比女生多百分之几?”,并要求学生用不同的方法进行求解。学生在我的点拨和指导下,经过讨论,很快列出了不同的算式:(1)因为男生人数为单位“1”,因此女生人数为:1-20%=80%,因此男生比女生人数多:(1-80%)÷80%=25%。(2)同上,女生人数是男生人数的:1-20%=80%,又因为女生人数比男生人数少20%,因此可得,男生比女生人多:20%÷80%=25%。(3)同上,因为女生人数是男生人数的80%=4/5,即女生人数与男生人数的比是4∶5,,因此可得,因此男生比女生人数多:(5-4)÷4=25%。
通过一题多解不仅能拓宽学生的思维领域,增加学生的思维空间,同时通过总结,可揭示一些有规律性的东西,达到增长学生智能的目的。
二、通过一题的灵活多变,不断培养学生的创新素质
在教学中,如果能做到引导学生对命题条件、结论进行各种变换,能充分调动学生学习的积极性。
例如在学习了长方体的表面积后,我让学生归纳出了求长方体的表面积公式后,我出示长方体的实物,并演示提出如果少掉一个底面的一个面,请学生思考这时五个面的面积公式又是怎样的?如果少掉前面的一个面,这时五个面的面积公式又是怎样的?如果少掉两个底面,这时的四个面的面积公式又是怎样的?少掉了两个底面,这时实际只要求什么?那一种物体只要求出四个面?学生经过讨论,很快能说出求五个面的面积公式,并知道少掉两个底面,实际上只要求长方体的侧面积,通风管即只要求四个面。这样通过运用实物和教具,让学生在实践中通过联想,增强了学生的创新意识,培养了学生的创造性思维能力,同时也提高了学生的解题能力。
再如课本上九年义务教育六年制小学数学第十二册中的的一道思考题:“修一条公路,已修和未修长度的比是1∶3,再修300米后,已修和未修长度的比是1∶2。这条路长多少米?”
这道题有的学生求解会有一定的难度,我就先出示了这样一道题:“修一条公路,已修了全长的1/4,再修300米后,则已修了全长的1/3,这条路长多少米?”。这道题学生很快能列出算式:300÷(1/3-1/4)=3600(米)。
然后我再引导学生思考,上面一道思考题的条件是:“再修300米后,已修和未修长度的比是1∶2”,这里隐藏着一个等量关系,如果抓住这个等量关系,就可列方程解答。设已修的长度为X米,那么未修的长度为3X米。
(X+300)∶(3X-300)=l∶2
解得X=900
X+3X=900+900×3=3600(米)
答:这条路长3600米。
接着,我再引导学生,又因为公路的总米数是“不变量”,把条件“已修和未修长度的比是1∶3,再修300米后,已修和未修长度的比是1∶2”转化为:“已修长度是未修长度的1/3,再修300米,已修长度是未修长度的1/2”,如把公路全长看作单位“1”,所以可得,已修的长度就是总长度的:1/3÷(1+1/3)=1/4,再修300米后,已修的长度就是总长度的:1/2÷(1+1/2)=1/3,由此可知,300米就相当于公路全长的:(1/3-1/4),所以可列式为:300÷(1/3-1/4)=3600(米)。答:这条路有3600米。
在学生掌握了这道思考题的解答方法后,我又出示了这样一题:“修一条公路,已修长度是未修长度的是1/3,再修300米后,已修长度是未修长度的1/2。这条路长多少米?”。然后我组织学生讨论,学生在掌握了上道题的解题方法后,很快能求出公路的全长是:300÷[1/2÷(1+1/2)-1/3÷(1+1/3)]=3600(米)。
接着,我又出示了这样一题:“修一条公路,未修长度是已修长度的3倍,再修300米后,未修长度是已修长度的2倍。这条路长多少米?”。我再组织学生讨论,学生在解答了上面二题的基础上,也能很快求出这条公路的长度是:300÷[1÷(1+2)-1÷(1+3)]=3600(米)。
在长期的教学实践中,我认识到,数学教师要在课堂教学中培养学生的创造力,教师首先应创设一种民主、宽松、和谐的教学环境和教学气氛。有意识的培养学生的创新意识;善于激发学生的创造动机;发展学生的创造思维;树立学生具有创造力的个性品质。同时教师还要注意自身的知识和能力储备。教师自己能够打破传统定势,提高自身的认知水平,才能更加灵活的去引导学生的发展,更好的促进学生的发展,实现教书育人的目的