论文部分内容阅读
车尔尼雪夫斯基说:“任何事物,我们在那里看得见依照我们的理解应当如此,那就是美的。”数学公式当然是“任何事物”中的一件。于是,如果它符合自身的“应当如此”,那就美。问题在于,界定数学公式的“应当如此”的原则是什么?笔者从事数学杂志的编辑工作仅仅十年,在诸公面前提出数学公式中的美学原则,不免汗颜。然而,想到也许能起到抛砖引玉之效,便顾不得许多了。一、直觉美。所谓直觉美,是指编排出来的数学式子,在内行和外行的视觉中,都具有美感的一种美。例如: sin(A+B/3)=sinAcos(B/3)+cosAsin(B/3)
Chernyshevsky said: “Everything, where we see it as we understand it, is beautiful.” Mathematical formulas are, of course, one of “anything.” So, if it meets its own “should be” so beautiful. The problem is that what defines the “should be” principle of a math formula? The editor of a math magazine is only 10 years old. It is inevitable that the aesthetic principle of mathematical formulas should be put forward before the public. However, think of it may be able to play a valuable role, they take care of much. First, the intuitive beauty. The so-called intuitionistic beauty refers to the math formula that is arranged. It has the beauty of beauty in both the experts and the layman’s visual. For example, sin (A + B / 3) = sinAcos (B / 3) + cosAsin (B / 3)