论文部分内容阅读
针对A型反射超声波检测仪难以准确识别缺陷类型的问题,探讨了基于小波包和BP神经网络相结合的超声检测缺陷类型识别方法。对检测的多组超声缺陷信号分别进行3层小波包分解,提取小波包频谱能量特征,归一化后构造了各缺陷信号的特征向量,并分别组成训练样本集和测试样本集,用于3层BP神经网络的训练和网络识别效果检验。实验结果表明该方法能准确快速地识别出超声检测缺陷类型。