Extended Kantorovich method for local stresses in composite laminates upon polynomial stress functio

来源 :Acta Mechanica Sinica | 被引量 : 0次 | 上传用户:ananqiqi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work,the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is established to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method(FEM). The convergent stresses have good agreements with those results obtained by three dimensional(3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM. The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain Applying the principle of complementary virtual work, the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is established to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method (FEM) The convergent stresses have goo d agreements with those results obtained by three dimensional (3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.
其他文献
基于碳纳米管的电子器件,如开关、整流、存储、场效应、场发射已进行了广泛的研究,但是如何将这些独立的电子器件连接成一个功能系统,仍是纳米电子学领域的一大挑战.因此随着
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
针对Bonikowski覆盖广义粗糙集模型的不足,给出了基于最小描述交的覆盖上下近似算子。通过和Pawlak经典粗糙集以及Bonikowski的覆盖广义粗糙集比较,发现给出的覆盖上、下近似
配位络合驱动的超分子体系的设计、合成和性质研究是目前配位化学最活跃的研究领域之一,它涉及无机化学、物理化学、有机合成、晶体学等多学科领域;同时又是合成新型功能材料
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
2014年,58同城发布旗下全新品牌“58到家”,58到家将成为与58同城并列的两个公司,由陈小华出任CEO,独立创业.他带队自营美甲、速运和家政三项业务,并搭起了到家平台.那年他32
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
近日,中国科学院化学研究所分子纳米结构与纳米技术院重点实验室万立骏研究小组,利用扫描隧道显微镜(STM)详细研究了铂金属-有机长方形金属配合物分子的自组装行为,并从理论
抗体在免疫系统中发挥着重要作用.然而在对抗病毒和肿瘤等较为复杂的抗原物时,天然抗体却表现出了如下不足:(ⅰ)由于天然抗体的亲和力太强,分子体积较大, Antibodies play a