论文部分内容阅读
传统癫痫发作通道选择方法需要提取特征,然后人工进行特征选择,最后基于所选特征训练分类器实现发作检测.为优化特征提取与选择过程,提出一种具有自学习特性,基于深度学习的癫痫脑电通道选择与发作自动检测组合模型.该方法利用卷积自编码器对癫痫脑电数据进行自适应特征提取,获得代表不同通道的特征子集;依据费舍尔准则筛选出特征子集与脑电通道;通过基于参数迁移的一维卷积神经网络实现癫痫发作脑电信号的检测.使用PhysioNet网站中的CHB-MIT数据库中8例有效数据量较为充足的病患脑电数据对组合模型进行有效性评价.对比该