基于有限元法的车架仿真分析与试验研究

来源 :机械制造与自动化 | 被引量 : 0次 | 上传用户:zzjqwerty6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对某钢厂250 t钢包车车架结构的变形和局部破损问题,采用有限元方法对车体与钢水包开展静力学仿真。建立钢水包与钢包车的三维几何模型,将几何模型导入Hypemesh;建立三维有限元模型;将有限元模型导入ANSYS的结构分析模块进行计算。结果显示,原有钢包车长期使用后会出现局部破坏,并且和现场一致。基于计算结果,对车体结构进行优化,显著提高了车体的局部强度和整体承载能力。
其他文献
针对传统铝箔剪切机碎屑收集管存在两个支管吸力不均匀问题,使用计算流体动力学方法比较不同管路设计结构,在分析管内流态变化规律基础上,给出管路优化设计建议。数值分析结果表明:两个挡板型管路可通过调整挡板高度比例实现支管吸力均匀要求;等距型管路支管口速度、吸力差可控制在1%以内,且随挡板高度增加,支管口吸力变大,可较好地完成铝箔剪切机碎屑收集任务。
考虑湿热环境对复合材料的影响,在经典层合板理论的基础上对本构模型进行修正,使用逐渐累积损伤分析方法建立湿热环境下层合板强度预测模型。以T300/BMP316含孔板为研究对象,在ANSYS有限元软件中开展不同湿热环境下的拉伸强度数值仿真预测研究,预测结果与试验结果相比误差在±5%以内,证明了模型的可靠性。
脱离锁是重型货物空投系统中降落伞和货台分离的关键部件。针对一种偏摆式脱离锁的可靠度,分析其故障和失效原因,确定影响脱离锁脱离的主要参数;将影响参数用均匀分布和正态分布随机化,设计脱离锁的可靠度仿真试验方案;应用蒙特卡罗方法,进行多次仿真试验并对数据进行分布拟合,计算得到脱离锁的可靠度约为99%,同时得到脱离锁的主要影响参数。该方法可用于定量计算脱离锁的可靠度,为重型货物空投提供理论依据。
在汽车白车身连接技术中,自冲铆接占据着重要的地位。基于ABAQUS有限元软件建立自冲铆接仿真模型。采用Python脚本语言和RSG功能对ABAQUS软件的前后处理模块进行二次开发,建立参数化建模的人机界面,有效简化建立模型的繁琐过程。通过对不同头高参数和底层板厚度的模型进行仿真与试验,验证仿真模型的准确性。研究结果表明:提高头高参数和底层板厚度都能够增加薄板搭接的铆接接头剩余厚度。
拉法尔喷管结构设计的合理性直接影响真空发生器的工作效率。使用FLUENT模拟软件对拉法尔喷管结构和使用工况两个方面进行模拟分析,寻求内外部因素对喷管出口速度变化的影响关系。由仿真结果可知,喷管出口背压与进气压力的比值决定喷管内部的流动状态,拉法尔喷管的收缩角与扩张角的改变对喷管出口流速影响较小,而改变喷管出口截面与喷管喉部截面的面积比,喷管出口速度发生显著改变。
为减少薄铝箔剪切机在高速切削过程中产生的震动,找到影响分切过程中震动产生的主要因素,对碟形刀装置进行ABAQUS有限元仿真分析,通过模拟实际工况,分析加载周期性载荷工况下的应力、应变分布情况。结果表明:在螺栓预紧力的作用下,刀座径向开口处发生变形,尤其碟刀片安装基准面变形明显,最大变形位移超过0.03 mm;在高速切削过程中,碟刀片受到不均匀切削力的周期性变化,导致整体装置震动,降低了分切精度。实验数据验证了仿真结果的正确性。对结构进行优化改进后,已在实际产品中得到应用。
针对传统车间监控方式落后、可视化程度低且实时性差的问题,设计一种面向离散车间生产过程的三维可视化监控系统。通过车间生产过程分析,确定系统的体系架构,明确系统的开发运行模式。对监控Agent构建、多源异构生产要素感知集成、实时信息数据处理和全参数虚拟车间建模技术进行研究。验证表明了该监控系统的有效性。
以天线指向机构为研究对象,采用两相混合式步进电机作为其驱动机构,设计基于国产FPGA的伺服控制器。以细分SPWM技术为基础,设计基于插值的PID控制算法进行位置闭环控制来提高步进电机的指向精度和保证步进电机的平滑指向,在Simulink中对此算法进行仿真分析。进行热循环试验和EMC试验来验证国产FPGA在空间环境中的可靠性。试验表明,该伺服控制器的指向精度达到0.1°,满足空间环境可靠性的要求。
分析RV-40E型减速器加载下关键部件的受力及模态情况。利用UG软件建立减速器输入端及摆线轮的动力学分析模型,对模型进行静态及模态求解。计算得到输入轴和行星轮的啮合齿轮在不同转矩下应力、应变及位移的最大值,摆线轮应力、应变、位移的最大值及固有频率与振型。确定各部件最大应力及振型发生位置,为RV减速器的优化设计提供理论基础。
为了解决某型榴弹加工过程中对内膛圆柱部加工难以到位的问题,采用将原有刀杆进行折弯设计的思路对刀杆进行改进。根据弹体与刀杆加工内膛圆柱部的位置关系以及材料力学的相关知识确定折弯力,通过ANSYS Workbench对原刀杆的折弯效果进行刚柔耦合动力学分析,并计算折弯刀杆切削时的受力和变形情况。经过仿真分析,证明此设计方案满足设计要求。对设计方案进行刀杆和弹体的加工实验,验证设计的可行性。