论文部分内容阅读
【摘 要】如何在初中数学教学中培养学生的思维能力,养成良好思维品质,是教学改革的一个重要课题。本文从几个方面对此话题进行论述,以期与广大教师共勉。
【关键词】初中生;数学;思维能力;培养
如何依据新课标培养初中学生的数学思维能力,我做了一些有益的探索与尝试。
1. 要善于调动学生内在的思维能力
培养学生学习数学的兴趣,促进数学思维全面发展。兴趣永远是学生学习的最好老师,也是每个学生自觉求知的内在动力。初中数学教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使同学们认识到数学在四化建设中的重要地位和作用。经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。新教材中安排的“想一想”、“读一读”不仅能扩大知识面,还能提高同学的学习兴趣,是比较受欢迎的题材。适当分段,分散难点,创造条件让学生乐于思维。如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。因此,我在进行代数式教学时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极的分析思维。
2. 要教会学生思维的方法
孔子说:“学而不思则罔,思而不学则殆”。恰当地示明学思关系,才能取得良好的效果。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。
要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的基础,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
在例题课中要把解(证)题思路的发现过程作为重要的教学环节。不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。
在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力。学会从条件到结论或从结论到条件的正逆两种分析方法。对一个数学题,首先要能判断它是属于哪个范围的题目,涉及到哪些概念、定理、或计算公式。在解(证)题过程中尽量要学会数学语言、数学符号的运用。
初中数学研究对象大致可分为两类,一类是研究数量关系的,另一类是研究空间形式的,即“代数”、“几何”。要使同学们熟练地掌握一些重要的数学方法,主要有配方法、换之法、待定系数法、综合法、分析法及反证法等。
3. 阶梯式培养学生的数学思维能力
由于数学思维具有间接性的特征,这种间接性是由于有知识经验的作用,而且是随着知识经验的丰富而不断发展的,因此,对学生的数学思维能力培养的研究必须与学生的数学知识结构和学生的认知结构结合起来,如辨证逻辑思维的发展,小学高年级有了初步的意识,到初一开始已经掌握辩证逻辑思维的各种形式,但还是雏形,水平较低,到初三处于迅速发展阶段,是个重要的转折时期。所以根据中学生的年龄特征和认识规律,由浅入深,由易到难,学生是可以接受的。 这一课题的研究分三年实施,初一重点进行阅读数学教材及表达能力的培养,初步训练逻辑思维能力;初二重点进行形象思维与思维敏捷性的训练,培养学生独立思考寻找解题规律的能力,从而使数学思维迈进一步;初三重点培养学生的概括能力和数学思维品 质,进行数学思维的全面训练,从小处着手,大处着眼,最终完成对学生数学思维能力的培养。
4. 要培养学生良好的思维品质
在学生初步学会如何思维和掌握一定的思维方法后,应加强思维能力的训练及思维品质的培养。要注意培养思维的条理性与敏捷性。根据解题目标,确定解题方向。要训练学生思维清晰,条理清楚,遇到问题能按一定顺序去分析、思考,对复杂问题应训练学生善于于局部到整体再从整体到局部的思维方法。学生在思维过程中,要能迅速发现问题和解决问题。
要注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例:K是什么数时,方程KX2-(2K+1)X+K=0有两个不相等的实数根?很多同学只注意由△=[-(2K+1)]2-4K·K=4K2+4K+1-4K2=4K+1>0,推得K>-14。而如果把K>-14作为本题答案那就错了,因为当K=0时,原方程不是二次方程,所以在K>-14还得把K=0这个值排除。正确的答案应是-140时,原方程有两个不相等的实数根。
在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练,还可改变条件进行“一题多变”和“多题一解”的训练。这是综合运用数学知识和方法提高解题能力的重要措施。培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。
5. 思维创造性的培养
新大纲中增加了重视创新意识和实践能力的培养一小节说明,在具体内容中增加探究性活动。课文中增加了探究课,探究性习题。教学实践表明,解答这类问题只运用逻辑思维难以完成,需要把逻辑思维、形象思维和直觉思维综合起来发挥作用,产生创新性思维。创新思维能力是在点点滴滴积累中形成的,这就要求教师在每个教学环节中有意识地创设情境去培养。在计算公式的推导中、在想一想,猜一猜中、在应用性问题的探究中,落实创新思维能力的培养。
总之,良好的数学思维品质并不是一时半会就能形成的,但只要根据初中学生实际情况,通过这些合理、科学的教学手段,坚持不懈努力,学习的思维定会有所发展。
收稿日期:2013-05-11
【关键词】初中生;数学;思维能力;培养
如何依据新课标培养初中学生的数学思维能力,我做了一些有益的探索与尝试。
1. 要善于调动学生内在的思维能力
培养学生学习数学的兴趣,促进数学思维全面发展。兴趣永远是学生学习的最好老师,也是每个学生自觉求知的内在动力。初中数学教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使同学们认识到数学在四化建设中的重要地位和作用。经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。新教材中安排的“想一想”、“读一读”不仅能扩大知识面,还能提高同学的学习兴趣,是比较受欢迎的题材。适当分段,分散难点,创造条件让学生乐于思维。如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。因此,我在进行代数式教学时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极的分析思维。
2. 要教会学生思维的方法
孔子说:“学而不思则罔,思而不学则殆”。恰当地示明学思关系,才能取得良好的效果。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。
要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的基础,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
在例题课中要把解(证)题思路的发现过程作为重要的教学环节。不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。
在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力。学会从条件到结论或从结论到条件的正逆两种分析方法。对一个数学题,首先要能判断它是属于哪个范围的题目,涉及到哪些概念、定理、或计算公式。在解(证)题过程中尽量要学会数学语言、数学符号的运用。
初中数学研究对象大致可分为两类,一类是研究数量关系的,另一类是研究空间形式的,即“代数”、“几何”。要使同学们熟练地掌握一些重要的数学方法,主要有配方法、换之法、待定系数法、综合法、分析法及反证法等。
3. 阶梯式培养学生的数学思维能力
由于数学思维具有间接性的特征,这种间接性是由于有知识经验的作用,而且是随着知识经验的丰富而不断发展的,因此,对学生的数学思维能力培养的研究必须与学生的数学知识结构和学生的认知结构结合起来,如辨证逻辑思维的发展,小学高年级有了初步的意识,到初一开始已经掌握辩证逻辑思维的各种形式,但还是雏形,水平较低,到初三处于迅速发展阶段,是个重要的转折时期。所以根据中学生的年龄特征和认识规律,由浅入深,由易到难,学生是可以接受的。 这一课题的研究分三年实施,初一重点进行阅读数学教材及表达能力的培养,初步训练逻辑思维能力;初二重点进行形象思维与思维敏捷性的训练,培养学生独立思考寻找解题规律的能力,从而使数学思维迈进一步;初三重点培养学生的概括能力和数学思维品 质,进行数学思维的全面训练,从小处着手,大处着眼,最终完成对学生数学思维能力的培养。
4. 要培养学生良好的思维品质
在学生初步学会如何思维和掌握一定的思维方法后,应加强思维能力的训练及思维品质的培养。要注意培养思维的条理性与敏捷性。根据解题目标,确定解题方向。要训练学生思维清晰,条理清楚,遇到问题能按一定顺序去分析、思考,对复杂问题应训练学生善于于局部到整体再从整体到局部的思维方法。学生在思维过程中,要能迅速发现问题和解决问题。
要注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。例:K是什么数时,方程KX2-(2K+1)X+K=0有两个不相等的实数根?很多同学只注意由△=[-(2K+1)]2-4K·K=4K2+4K+1-4K2=4K+1>0,推得K>-14。而如果把K>-14作为本题答案那就错了,因为当K=0时,原方程不是二次方程,所以在K>-14还得把K=0这个值排除。正确的答案应是-14
在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练,还可改变条件进行“一题多变”和“多题一解”的训练。这是综合运用数学知识和方法提高解题能力的重要措施。培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思。
5. 思维创造性的培养
新大纲中增加了重视创新意识和实践能力的培养一小节说明,在具体内容中增加探究性活动。课文中增加了探究课,探究性习题。教学实践表明,解答这类问题只运用逻辑思维难以完成,需要把逻辑思维、形象思维和直觉思维综合起来发挥作用,产生创新性思维。创新思维能力是在点点滴滴积累中形成的,这就要求教师在每个教学环节中有意识地创设情境去培养。在计算公式的推导中、在想一想,猜一猜中、在应用性问题的探究中,落实创新思维能力的培养。
总之,良好的数学思维品质并不是一时半会就能形成的,但只要根据初中学生实际情况,通过这些合理、科学的教学手段,坚持不懈努力,学习的思维定会有所发展。
收稿日期:2013-05-11