论文部分内容阅读
The cast Ti-6Al-4V alloy bars with different section sizes were fabricated by investment casting at counter-gravity condition with the mold temperatures of 300 °C and 650 °C, respectively. The microstructure of the alloy was observed by means of OM and SEM, and the effect of mold temperature and casting dimension on tensile properties was studied. Results show that equiaxed grains are obtained regardless of the casting dimension. β grain size tends to increase with an increase in mold temperature. Hot isostatic pressing of the alloy was carried out for tensile properties’ comparison. Room temperature tensile test results show that Ti-6Al-4V alloy produced via counter-gravity casting has good balance of strength and ductility after hot isostatic pressing(HIP). The alloy shows higher ductility due to the elimination of porosity. In both cast and HIP status, the tensile strength is inclined to decrease with an increase in mold temperature, while the ductility is prone to slightly increase. Both the strength and ductility tend to decrease with an increase in the casting dimension.
The cast Ti-6Al-4V alloy bars with different section sizes were fabricated by investment casting at counter-gravity conditions with the mold temperatures of 300 ° C and 650 ° C, respectively. The microstructure of the alloy was observed by means of OM and SEM, and the effect of mold temperature and casting dimension on tensile properties was studied. Results show that equiaxed grains are obtained regardless of the casting dimension. Β grain size tends to increase with an increase in mold temperature. Room temperature tensile test results show that Ti-6Al-4V alloy produced via counter-gravity casting has good balance of strength and ductility after hot isostatic pressing (HIP). The alloy shows higher ductility due to the elimination of porosity. In both cast and HIP status, the tensile strength is inclined to decrease with an increase in mold temperature, while the ductility is prone to slightly incre both the strength and ductility tend to decrease with an increase in the casting dimension.