论文部分内容阅读
通过对取向硅钢脱碳退火的实验研究,比较退火气氛、退火温度和退火时间对取向硅钢脱碳效果的影响。结果表明,在退火温度830℃、保护气氛氢浓度为25%条件下退火3 min,保护气氛露点为40.0、42.5、45.0和47.5℃时,试样碳含量分别为33.2×10-6、26.7×10-6、6.3×10-6和62.8×10-6。在退火温度830℃、保护气氛露点为45℃的条件下退火3 min,保护气氛氢气浓度为10%、25%、40%和55%时,试样碳含量分别为298.0×10-6、6.3×10-6、30.0×10-6和26.5×10-6。在保护气氛露点为45℃、氢气浓度25%的条件下退火2.5 min,退火温度为790、810、830、850和870℃时,试样碳含量分别为195.0×10-6、126.0×10-6、10.1×10-6、52.0×10-6和26.0×10-6。在退火温度830℃、保护气氛氢浓度为25%、保护气氛露点为45℃的条件下,脱碳效果最好。脱碳退火时,试样表面生成的氧化物影响H2O、H2和CO等在炉内气氛和脱碳反应界面间的扩散,这是导致试样碳含量随水氢分压比呈“U”型分布的主要原因。退火温度升高,一方面导致试样再结晶速度增快,基体内位错密度下降加快;另一方面导致碳沿晶内和位错扩散系数增大。这是导致试样碳含量随温度呈反“N”型分布的主要原因。
The decarburization annealing of oriented silicon steel was studied. The effects of annealing atmosphere, annealing temperature and annealing time on the decarburization effect of oriented silicon steel were compared. The results show that when the annealing temperature is 830 ℃, the hydrogen concentration in the protective atmosphere is 25%, the annealing time is 3 min, the dew point of the protective atmosphere is 40.0, 42.5, 45.0 and 47.5 ℃, the carbon contents of the samples are 33.2 × 10-6 and 26.7 × 10-6, 6.3x10-6, and 62.8x10-6. When the annealing temperature is 830 ℃ and the dew point of the protective atmosphere is 45 ℃ for 3 min, the carbon content in the protective atmosphere is 10%, 25%, 40% and 55% respectively, and the carbon content in the sample is 298.0 × 10-6,6.3 × 10 -6, 30.0 × 10 -6, and 26.5 × 10 -6. When the dew point of the protective atmosphere is 45 ℃ and the hydrogen concentration is 25%, annealing time is 2.5 min. When the annealing temperature is 790, 810, 830, 850 and 870 ℃, the carbon contents are 195.0 × 10-6 and 126.0 × 10- 6 × 10 -6, 2.0 × 10 -6, and 26.0 × 10 -6. Under the condition of annealing temperature of 830 ℃, protective atmosphere hydrogen concentration of 25% and dew point of protective atmosphere of 45 ℃, the decarburization effect is the best. During the decarburization annealing, the oxide formed on the sample surface affects the diffusion of H 2 O, H 2, CO and other gases between the atmosphere in the furnace and the decarburization reaction interface, which results in the carbon content of the sample being “U ”Type of distribution of the main reasons. Annealing temperature increases, on the one hand lead to faster sample recrystallization, the matrix within the dislocation density decreases faster; on the other hand lead to carbon along the crystal and dislocation diffusion coefficient increases. This is the main reason that the carbon content of the sample varies inversely with the temperature.