论文部分内容阅读
导体棒在金属导轨上切割磁感线运动是常见的物理模型,也是高考考查的重点.它涉及到力学和电学两个方面的知识,具有较高的综合性.学生对导体棒在匀强磁场中的各种切割运动掌握较好,但对导体棒与磁场间的相对运动问题以及导体棒在变化磁场中切割磁感线运动问题的处理,及其在此过程中能量转化问题的分析,有时会感到较棘手,出现思维上的定势,本文就上述问题进行一些分析,以期帮助同学们加深对这类问题的理解.
1导体棒与匀强磁场区域发生相对运动
在这类问题中,感应电动势可应用E=BLv进行求解,只是式中v应是导体棒与匀强磁场区域的相对运动速度大小,其电流方向仍由右手定则进行判定,但要注意大拇指应指向导体棒相对磁场的运动方向.
例1如图1所示,光滑的平行长直金属导轨置于水平面内,间距为L,导轨左端接一阻值为R的电阻,质量为m的导体棒ab垂直跨接在导轨上.导轨与导体棒的电阻均不计,且接触良好.在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B.开始时,导体棒静止于磁场区域的右端,当磁场以速度v1匀速向右移动时,导体棒也随之开始运动,且同时受到水平向左、大小恒定的阻力f作用,并很快到达稳定速度,此时导体棒仍处于匀强磁场之中,求:
(1)导体棒所达到的稳定速度v2;
(2)为使导体棒能随磁场运动,其阻力最大值为多大?
(3)导体棒以稳定速度运动时,克服阻力做功的功率和电路中消耗的电功率各为多大?
(4)在t=0时,匀强磁场区域由静止开始水平向右作匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v-t图象如图2所示,已知t时刻导体棒瞬时速度为vt,则导体棒做匀加速直线运动时加速度的大小.
2磁感应强度随空间位置发生变化
当磁场在空间分布为非均匀变化,随着导体棒的运动,不同时刻导体棒所在位置处的磁感应强度不同,从而导致回路中的感应电流也会随时间而发生变化.
例2如图3所示,固定于水平桌面上的平行金属导轨MN、PQ、MP间接一定值电阻R,金属棒ab搁在框架上可以无摩擦地滑动,电阻为r,金属导轨电阻不计.以图示时刻ab棒的位置为坐标原点O,平行于PQ方向为x轴的正向,在x≥0的空间存在竖直向下的磁场,磁场按B=kx的规律分布,在ab上作用一水平外力,使ab从x=0位置开始以v0匀速运动,写出水平力F(t)的表达式.
解析由于磁场随空间位置变化,导体棒在磁场中运动时,导体棒所在处的磁感应强度也不断变化,因而产生的动生电动势也随空间位置发生改变,但空间磁场分布只是随位置而改变,而磁场分布情况却不随时间而改变,所以这种情况下回路不产生感生电动势,这是学生往往理解不清而容易出错的原因.
从上面分析可知,当磁场随空间位置变化时,导体棒作切割磁感线运动时,只引起动生电动势随时间变化,回路中磁场分布不随时间改变,故不产生感生电动势,由于导体棒匀速运动,所以导体棒克服安培力所做的功就等于电路中产生的电能.
3磁感应强度随时间发生变化
导轨水平放在磁场中,当导体棒作切割磁感线运动时,磁感应强度也随时间变化在这种情况下,电路中由于磁感应强度随时间变化,回路中要产生感应电动势,同时由于导体棒作切割磁感线运动,回路中还产生动生电动势,电路中总的电动势为感生电功势与动生电动势的叠加.
例3如图4所示,固定于水平桌面上的金属框架cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架上无摩擦滑动,t=0时,adeb刚好构成一个边长为L的正方形,棒的电阻为r,其余部分电阻不计,此时,磁感应强度为零,若磁感应强度均匀增加,其变化率为k,同时金属棒ab在外力作用下以恒定速度v向右运动,则当t=t1时,垂直于棒水平方向所加拉力为多大?
仍用“电路中产生的电能等于导体棒克服安培力所做的功”进行求解,从而得到错误的结果,究其原因,主要是未弄清当导体棒不运动时,由于回路磁场变化,回路中同样会产生电能,而此过程中导体棒并没有克服安培力做功,弄清问题实质后,学生就会茅塞顿开,知道在感生电动势和动生电动势同时存在时,电路中产生的电能是由导体棒通过克服安培力做功和通过磁场变化同时产生的,即由棒的机械能和磁场能同时和电能间的转化而来的.
综上所述,无论导体棒和磁场相对运动,还是磁场随空间位置变化或磁场随时间发生变化,只要抓住问题的本质,从基本规律出发,将常规的基础题进行变化,使学生产生联想,情境变换,知识迁移,对基本物理模型进行再构与拓展,就能使学生的思维能力和创新能力得到迅速提升,起到举一反三、触类旁通之效.
1导体棒与匀强磁场区域发生相对运动
在这类问题中,感应电动势可应用E=BLv进行求解,只是式中v应是导体棒与匀强磁场区域的相对运动速度大小,其电流方向仍由右手定则进行判定,但要注意大拇指应指向导体棒相对磁场的运动方向.
例1如图1所示,光滑的平行长直金属导轨置于水平面内,间距为L,导轨左端接一阻值为R的电阻,质量为m的导体棒ab垂直跨接在导轨上.导轨与导体棒的电阻均不计,且接触良好.在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B.开始时,导体棒静止于磁场区域的右端,当磁场以速度v1匀速向右移动时,导体棒也随之开始运动,且同时受到水平向左、大小恒定的阻力f作用,并很快到达稳定速度,此时导体棒仍处于匀强磁场之中,求:
(1)导体棒所达到的稳定速度v2;
(2)为使导体棒能随磁场运动,其阻力最大值为多大?
(3)导体棒以稳定速度运动时,克服阻力做功的功率和电路中消耗的电功率各为多大?
(4)在t=0时,匀强磁场区域由静止开始水平向右作匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v-t图象如图2所示,已知t时刻导体棒瞬时速度为vt,则导体棒做匀加速直线运动时加速度的大小.
2磁感应强度随空间位置发生变化
当磁场在空间分布为非均匀变化,随着导体棒的运动,不同时刻导体棒所在位置处的磁感应强度不同,从而导致回路中的感应电流也会随时间而发生变化.
例2如图3所示,固定于水平桌面上的平行金属导轨MN、PQ、MP间接一定值电阻R,金属棒ab搁在框架上可以无摩擦地滑动,电阻为r,金属导轨电阻不计.以图示时刻ab棒的位置为坐标原点O,平行于PQ方向为x轴的正向,在x≥0的空间存在竖直向下的磁场,磁场按B=kx的规律分布,在ab上作用一水平外力,使ab从x=0位置开始以v0匀速运动,写出水平力F(t)的表达式.
解析由于磁场随空间位置变化,导体棒在磁场中运动时,导体棒所在处的磁感应强度也不断变化,因而产生的动生电动势也随空间位置发生改变,但空间磁场分布只是随位置而改变,而磁场分布情况却不随时间而改变,所以这种情况下回路不产生感生电动势,这是学生往往理解不清而容易出错的原因.
从上面分析可知,当磁场随空间位置变化时,导体棒作切割磁感线运动时,只引起动生电动势随时间变化,回路中磁场分布不随时间改变,故不产生感生电动势,由于导体棒匀速运动,所以导体棒克服安培力所做的功就等于电路中产生的电能.
3磁感应强度随时间发生变化
导轨水平放在磁场中,当导体棒作切割磁感线运动时,磁感应强度也随时间变化在这种情况下,电路中由于磁感应强度随时间变化,回路中要产生感应电动势,同时由于导体棒作切割磁感线运动,回路中还产生动生电动势,电路中总的电动势为感生电功势与动生电动势的叠加.
例3如图4所示,固定于水平桌面上的金属框架cdef,处在竖直向下的匀强磁场中,金属棒ab搁在框架上无摩擦滑动,t=0时,adeb刚好构成一个边长为L的正方形,棒的电阻为r,其余部分电阻不计,此时,磁感应强度为零,若磁感应强度均匀增加,其变化率为k,同时金属棒ab在外力作用下以恒定速度v向右运动,则当t=t1时,垂直于棒水平方向所加拉力为多大?
仍用“电路中产生的电能等于导体棒克服安培力所做的功”进行求解,从而得到错误的结果,究其原因,主要是未弄清当导体棒不运动时,由于回路磁场变化,回路中同样会产生电能,而此过程中导体棒并没有克服安培力做功,弄清问题实质后,学生就会茅塞顿开,知道在感生电动势和动生电动势同时存在时,电路中产生的电能是由导体棒通过克服安培力做功和通过磁场变化同时产生的,即由棒的机械能和磁场能同时和电能间的转化而来的.
综上所述,无论导体棒和磁场相对运动,还是磁场随空间位置变化或磁场随时间发生变化,只要抓住问题的本质,从基本规律出发,将常规的基础题进行变化,使学生产生联想,情境变换,知识迁移,对基本物理模型进行再构与拓展,就能使学生的思维能力和创新能力得到迅速提升,起到举一反三、触类旁通之效.