论文部分内容阅读
针对正则化极限学习机(RELM)中隐节点数影响分类准确性问题,提出一种灵敏度正则化极限学习机(SRELM)算法.首先根据隐含层激活函数的输出及其相对应的输出层权重系数,推导实际值与隐节点输出值残差相对于隐节点的灵敏度计算公式,然后根据不同隐节点的灵敏度进行排序,利用优化样本的分类准确率删减次要隐节点,从而有效提高SRELM的分类准确率.MNIST手写体数字库实验结果表明,相比于传统的SVM和RELM,SRELM方法的耗时与RELM相差不大,均明显低于SVM,SRELM对手写数字的识别准确率最高.