三黄珍珠膏用于会阴侧切口和会阴撕裂伤创口75例分析

来源 :中国社区医师 | 被引量 : 0次 | 上传用户:zhaohaojed
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
<正>75例均为初产妇,年龄23~28岁,均无全身感染。会阴侧切49例,会阴撕裂伤26例,其中包括侧切+胎头吸引者18侧,4例切后伴有复杂撕裂伤,会阴Ⅰ°裂伤剧痛者3例,Ⅱ°裂伤者5例。 方法:分娩后当日或次日开始,首先用1/5000高锰酸钾外洗,再用75%酒精棉球清洁切口处和裂伤处,尔后用生理盐水棉球擦净晾干,然后用棉棒蘸药1~1.5g涂擦创面,1日3次,共用3~5天,会阴水肿明显者用量增加到2g/次。 结果:①根据疼痛程度,分为轻度,中度、重度、极重度,极重度不能忍受之痛。②判断结果见表: 表 用药前后疼痛程度测定结果疼痛程度 轻度 中度 重度 极重度 合计用药前中度疼痛者23例,占30.7%,重度疼痛者51例,占68%,极重度疼痛1例,占1.3%.用药后轻度疼者19例,占25.3%,中度疼痛者49侧,占65.3%,重度疼痛者7例,占9.4%,与用药前对照有显著效果。③病例中有18例做了会阴侧切+胎头
其他文献
基于激光离子源和直接等离子体注入方案的直线加速器能够提供强流短脉冲离子束,可以作为医用碳离子治疗装置的注入器,其高流强、高电荷态的特点可满足同步加速器单次单圈注入条件,从而使整个装置更为紧凑。另外,这种紧凑型直线加速器可用于短脉冲快中子发生器,具有高通量、准单能、准直性高等特点。因此,这种紧凑型直线加速器具有重要的应用价值。本论文基于近物所的激光离子源加RFQ的实验平台,对直接等离子体注入方案开展
学位
辐射屏蔽是保障核能安全的重要手段,是ADS研发设计的关键内容之一。与传统的核设施不同,Ci ADS运行时堆内粒子可以通过加速器束流管道泄漏到堆外,使得堆顶上方的辐射源项来源复杂,辐射范围广,其中高能、高通量的中子给Ci ADS的屏蔽设计工作带来很大的挑战。本文根据Ci ADS的初步设计方案,建立了堆靶耦合系统的几何模型,基于经过验证的MCNPX和FLUKA耦合计算方法,分析了堆靶耦合区的中子辐射特
学位
粒子加速器是一种可以把带电粒子加速到接近光速的特殊装置,磁铁电源是加速器装置的重要组成部分,电源的性能直接影响着加速器的束流品质。经过几十年的发展,加速器磁铁电源工作频率从起初的工频,发展到了近百k Hz,电源的工艺技术也从最初的离散器件向模块化发展。电源的高频化、模块化发展虽然使电源纹波更小,体积更小,功率密度更高,但是带来了更严重的电磁干扰问题。电源产生的电磁干扰不仅会影响电源自身的性能,还可
学位
得益于重离子束的倒转深度剂量分布特征,重离子调强放射治疗技术不仅能在肿瘤靶区产生适形的剂量分布,还能够减少肿瘤周围正常组织器官的照射剂量。然而,在实际治疗过程中该技术产生的剂量分布容易受多种不确定性的影响,导致患者最终接受的剂量分布与治疗计划生成的剂量分布不一致。因此,如何减少重离子束调强放射治疗过程中不确定性因素对剂量分布的影响是目前离子束放疗研究的主要目标之一。本文以相对生物学效应(RBE)加
学位
期刊
重离子加速器包含众多大功率和非线性的负荷,其工作过程中会对配电网的运行稳定性产生较大影响,新一代强流重离子加速器装置(High Intensity Heavy-ion Accelerator Facility,HIAF)是 国家“十二五”建设重点项 目之一,其配 电网存在冲击性负荷、过电压、三相不平衡和大电感负载等问题。如何实现长期、平稳和高效地运行是强流重离子加速器装置建设的难点,这对加速器配电
学位
随着国家“双碳”目标的提出,核能作为一种清洁能源在能源可持续发展中的地位愈加重要。然而核材料在反应堆中的性能退化一直是阻碍先进核能技术发展的主要瓶颈。碳化硅由于拥有高熔点、高热导率,高耐腐蚀率、中子反应截面小等优异特点,被认为是良好的先进核能候选材料之一。在服役期间,碳化硅组件长期处于高温、高腐蚀、高辐照环境下,容易发生肿胀、硬化、蠕变等现象。因此离子辐照下碳化硅的缺陷演化行为及力学性能变化研究可
学位
分条电离室是一款用于测量加速器终端束流位置及剖面均匀性的探测器,其特点是通道数多、信号弱且响应速度快,因此需要研制特定的前端电子学和数据采集系统。目前分条电离室采集系统主要是基于NI PXIe机箱和Flex RIO板卡来实现,存在体积大、不利于二次开发等问题,并且随着重离子装置的小型化、集成化和前端电子学的不断升级,该系统已经不能很好的满足实际需求,因此,本文研制了一款基于Zynq的分条电离室数据
学位
期刊
射频超导腔因其束流孔径大、能量损耗低、且能在连续波模式下高梯度稳定运行等优势,被广泛应用于各种粒子加速器装置。目前射频超导腔大多为纯铌材料制造。但基于纯铌的射频超导腔在表面处理、加速器稳定运行方面逐渐暴露出了一系列问题。一方面由于纯铌化学性质稳定,表面处理非常复杂,因此对于纯铌超导腔多使用缓冲化学抛光、电抛光等手段进行处理,而这些过程需要用到HF、HNO3等高毒、强腐蚀性溶液,处理非常危险,且对环
学位