论文部分内容阅读
为解决传统支持向量机预测模型的不足,造成矿山边坡位移预测精度低的问题。提出了一种基于自适应惯性权重PSO算法的支持向量回归机(SVR)组合预测模型。将其运用到某矿边坡滑坡位移预测中,并与基于灰色预测模型、基于传统SVR预测模型预测结果对比,结果表明:基于SVR组合预测模型的矿山边坡位移预测的精度更具优势。