论文部分内容阅读
<正> 有限闭区间上的连续函数,其基本定理中的介值定理、有界性定理和一致连续性定理,在多数教材中,常采用反证法或Borel有限覆盖定理加以证明。M·Spivak在其教材中,用Lebesgue方法证明了介值定理和有界性定理。本文说明:运用Lebesgue方法可以证明一致连续性定理。定理设f(x)在有限闭区间[a,b]上连续,则f(x)在[a,b]上一致连续。证明任意给定ε>0,作集合