论文部分内容阅读
主要讨论具有单隐层的正交投影神经网络的权值和阈值的学习问题,提出了一种新的将BP算法和GS算法相结合的杂交学习算法,其中GS算法对隐层到输出层的权值和阈值进行学习,BP算法用于输入层到隐层权值的学习,并给出一种最佳的隐层节点数的选取方法。仿真实验表明,该杂交学习算法具有学习速度快且能获得全局最优解的特点,并可有效地对学习过程中出现的病态情况进行求解,具有良好的普适性。