一种超长挠性连接器的加工技术研究

来源 :印制电路信息 | 被引量 : 0次 | 上传用户:xichblueagle
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着微电子技术的飞速发展,业界用柔性连接器替代传统电缆的方式会越来越多.为满足模块连接一体化要求,部分柔性连接器的设计长度达到2.0 m以上.对于此类超长的挠性连接器,在钻孔、沉铜电镀、线路制作、快压及外形加工方面(超过现有常规设备最大加工尺寸),存在较大的技术瓶颈.本文即对此类超长柔性连接器的加工技术进行研究,在现有设备基础上,采用分段加工方式及专用电镀治具,有效满足了2.0 m超长柔性连接器产品的加工.
其他文献
随着印制电路板(PCB)的高速化及高密度的发展,PCB层数越来越高,线宽越来越小.目前常见路由器、服务器等产品线宽能力要求必须达到±8.89μm,Cpk≥1.33,其阻抗才能满足±8%要求.目前很多普通蚀刻线的线宽均匀性能力已达不到能力要求.文章主要针对外层线宽均匀性的能力提升方法进行探讨,主要是通过调整喷头设计和排布来改善线宽均匀性,提升蚀刻制程能力,来满足高速PCB产品的外层线宽均匀性.
高可靠性要求的印制电路板,常要求进行孔内凹蚀以实现孔壁铜对内层铜具有三面包夹的效果增加互联可靠性.本文以实现凹蚀工艺的三个主要步骤:等离子、化学除胶和玻纤蚀刻对芯吸的影响研究为基础,通过SEM、微切片观察各流程后孔壁的微观形貌变化以及PTH后孔铜结构变化,分析了玻纤束及其周边树脂的变化与芯吸长度的关系,确定了各流程对芯吸长度的影响程度,相应地提出了改善芯吸效应的方法,为凹蚀工艺控制芯吸长度提供了有效的指导.
在印制电路板制作电镀过程中,电镀针孔是图形电镀生产过程中产生的不良缺陷之一,此缺陷严重影响了板件的一次合格率.本文通过对针孔产生的原因进行系统分析,识别产生原因,并有效解决问题,为PCB电镀制程改善提供参考.
化学镀镍金(ENIG)是印制电路板(PCB)制作过程中较为常见的表面处理方式,金缸中金浓度的稳定性为关键控制参数和指标,从而能严格控制产品镀金厚度,达到稳定生产品质并降低生产成本的目的.文章介绍X射线荧光光谱分析(X Ray Fluorescence,XRF)在测定PCB化学镀金工序金缸中镍金含量的应用.
文章重点综述了含磷环氧树脂和反应型含磷阻燃剂的合成与研究进展,介绍了含磷环氧固化体系在无卤覆铜板中的应用现状,进一步展望了5G浪潮下无卤覆铜板用含磷环氧树脂的发展方向.
高频高速挠性或刚挠结合印制电路板为抑制电磁干扰和减少信号传输损耗,在板面贴合电磁屏蔽膜.目前按传统工艺加工,刚挠结合印制板压合后出现电磁屏蔽膜掉膜而致品质不良,无法满足品质需求.本文通过对电磁屏蔽膜使用多种方案进行研究,有效地改善电磁屏蔽膜在制作过程中出现掉膜问题,为后续带电磁屏蔽膜刚挠结合印制板提供加工技术基础.
随着高端印制电路板的层数不断增多,通孔厚径比不断提高,现有技术已经很难满足当前微通孔金属化需求.传统通孔电镀采用的龙门线或垂直连续电镀线,主要采用底部打气或喷流的方式实现镀液的对流,很难促进高厚径比通孔内的物质输运.文章通过设计螺旋桨转动对流仿真模型,研究了镀槽中桨叶形成镀液对流对高厚径比通孔电镀的效果.螺旋桨转动形成的强制对流使镀液在电镀槽中形成环流,板件两面的镀液间形成压差推动镀液在通孔内流动,有效提高了电镀活性组分在微通孔内的输运效率.并通过实验槽电镀实验,对比了传统扰流和螺旋桨扰流下的电镀通孔效果
文章对影响印制板超短槽孔加工的不良因素进行了多方面的分析,从槽孔设计、加工刀具的选用等方面进行了研究,通过实验验证找到了一种有效改善并提高槽孔质量的工艺方法.
挠性印制电路板(FPCB)制造使用的挠性覆铜箔基板(FCCL),其厚度相对比较薄,在制造过程受力作用或操作不当容易造成损伤和折皱.为解决上述技术难题,行业上多使用单面承载膜进行支撑和保护FCCL基材.经过承载膜支撑和保护,FCCL基材在压合,固化,化金等制程中能始终保持平整,免受弯折,拿取方便,制造品质均匀.作为单面承载膜的应用延伸,本文特别论述一种双面承载膜上下固定两块FCCL基材同时进行单面FPCB生产的方式,可以避免薄板加工中不良影响,并能提高生产效率.
针对柔性电路在宇航运行的环境进行综合辐照试验,明确辐照试验对柔性电路表面微观形貌的影响,并通过XPS(X-ray Photoelectron Spectroscopy)分析微观形貌变化中柔性电路表面聚酰亚胺基团变化情况.通过分析可知,聚酰亚胺主链结构具有较强抗辐照功能,但是聚酰亚胺聚合过程中缺陷基团可能导致聚酰亚胺加速老化,进而可能造成柔性电路的性能发生变化.