论文部分内容阅读
设复数zA,zB 在复平面上分别对应于点A ,B ,则①zA,zB 的和所对应的向量适合向量加法的平行四边形法则或三角形法则 ;② |zA-zB|表示点A ,B间的距离 ;③zA,zB 的积或商所对应的向量适合向量乘、除法的旋转和伸缩法则 ;④方程xn=b(b∈C)的根的对应点均
Let complex numbers zA and zB correspond to points A and B on the complex plane respectively. Then the vector corresponding to the sum of 1zA and zB is suitable for parallelogram rule or triangle rule of vector addition; 2|zA-zB| denotes point A and B. The distance; 3zA, zB product or quotient corresponding vector suitable for vector multiplication, division of the rotation and expansion law; 4 equation xn = b (b ∈ C) the root of the corresponding point are