微纳尺度下准一维超导体TaSe3的物理减薄

来源 :微纳电子技术 | 被引量 : 0次 | 上传用户:kevisno1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在低维材料中,二维材料的剥离技术已经相对成熟,准一维材料由于具有特殊晶格结构,其减薄方法目前还缺乏系统的研究.针对准一维层状超导体TaSe3,借助X射线衍射仪(XRD)、Raman光谱仪(RS)、原子力显微镜(AFM)与光学显微镜(OM)表征手段,系统地研究了微纳尺度样品的机械剥离法与超声辅助液相剥离法.结果 表明:在机械剥离法中,提高温度或者改变样品放置方向使其与剥离方向垂直时,总剥离样品数和理想微纳尺度下的样品个数均增加,但理想样品占总样品的比例降低;在超声辅助液相剥离法中,利用超声波破碎仪,在振幅为305μm的条件下,超声20 min时,得到的理想样品最多,且远远多于机械剥离法得到的样品.因此,超声辅助液相剥离法与机械剥离法相比,更适用于微纳尺度准一维材料减薄.
其他文献
坚持创新创业教育改革是普通本科师范院校人才培养质量提升的重要方向,也是促进毕业生更高质量就业创业的重要举措.目前,传统本科师范院校存在着创新创业意识薄弱,师资专业化程度较低,课程体系不完善,教学模式陈旧、没有凸显师范特色等现状.基于智慧教育背景,提出提升师范生的创新创业意识,加强师资队伍建设和培育,推进产学合作、打造线上+线下创新创业教育综合实践平台,优化课程体系、构建PBL的数字化教学模式,基于大数据实施个性化教学等路径来推动本科师范院校创新创业教育的新发展.
挥发性有机物(VOCs)是大气中非常重要的污染物之一,对人体和环境危害大.因此,对VOCs进行长期在线监测研究成为近年来的热点.国内对VOCs的研究起步晚于国外,且测量仪器、技术经验相对薄弱.以天虹TH-300B串联Agilent 7890B/5977GCMSD大气环境挥发性有机物在线监测系统测试107种VOCs为例,介绍该监测系统的工作原理、仪器构造及系统性能测试等内容,对该测试系统进行总结,为相关研究提供帮助和后续改进方向.
“5G+教育”融合已成为共识和趋势,5G移动通信与云计算、大数据、人工智能、物联网等前沿技术的结合,为5G时代的智慧课堂教学模式带来了新的机遇.重点分析了智慧课堂存在的问题、5G智慧课堂的特点功能及在通信工程专业教学中的应用,探索基于5G通信的远程双向互动等创新教学模式的应用,在实际教学中采用VR全景课件和全息投影等技术,提高通信工程专业的教学效果和学校的教育信息化水平,它为将要到来的人工智能时代的学校改革和创新提供了实践基础.
在产业园区周边道路工程路面基层施工阶段,充分应用摊铺施工技术、接缝处理技术以及碾压施工技术,有利于提升施工质量,优化周边道路性能.基于此,具体围绕道路工程路面基层施工技术要点进行阐述,继而为道路工程施工企业积攒经验,为工业园区周边道路的安全使用给予保障,借此提高道路建设水平,满足新时代产业园区周边道路建设需求,促进道路事业的良性发展.
通过射频(RF)磁控溅射分别在光学玻璃基底上和多晶硅薄膜层上沉积了氧化铟锡(ITO)薄膜,采用Hall效应测试仪测试了ITO薄膜的电阻率和载流子浓度等参数,研究溅射功率和溅射时间等参数对ITO薄膜的光电特性影响.测试多晶Si对称结构沉积ITO薄膜前后及退火后的隐开路电压和反向饱和电流密度等参数,研究ITO薄膜对n型晶硅太阳电池钝化接触的影响.研究结果表明:在纯氩气氛围下、溅射功率为200 W、溅射时间为15 min、转速为10 r/min、工作气压为1 Pa,在250℃退火10 min条件下,ITO薄膜光
涡发生器(VG)是一种有效的强化传热结构,近年来在微细通道传热领域得到广泛关注.对带有翼型、扰流柱型和插入物型VG的矩形微细通道传热和综合性能的研究进行了综述.首先重点阐述了翼型和扰流柱型VG的形状、尺寸、布置方式等因素对以水为工质的微细通道传热和综合性能的影响,以及纳米流体的浓度、颗粒材料或基液类型对带有翼型和扰流柱型VG微细通道传热和综合性能的影响.然后简要介绍了线圈和扭带插入物型VG强化矩形微细通道传热的研究进展.最后采用综合性能评价准则对比评价布置不同VG微细通道的综合传热性能,从而总结出最优VG
摩擦纳米发电机已经广泛用于日常生活中收集各种机械能并转换为电能,作为触摸屏和智能皮肤技术的自供能传感系统.为了提高能量转换效率,设计了一种单电极的摩擦纳米发电机(S-TENG).将表面含有微米尺度浮雕结构的聚二甲基硅氧烷(PDMS)作为S-TENG的摩擦层,一层厚度为20 nm的铟锡氧化物膜作为电极层,通过外部电路可以输出电能.微米尺度浮雕结构增强了摩擦层的电学性能.在室温下使用示波器通过施加不同的外部压力检测了S-TENG的开路电压和短路电流.测试结果表明,制备的S-TENG的开路电压达到了80 V,短
为了解决传统数字聚合酶链式反应(PCR)扩增过程中移液操作产生的问题以及升降温速率慢的弊端,设计了一种连续流数字PCR微流控芯片,能对包含PCR反应体系的微滴进行快速扩增,可以提升核酸检测过程中的扩增效率.用COMSOL对芯片微通道内部的温度分布和两相流体的共轭传热进行了数值模拟.结果 表明,芯片内部能产生95、55和72℃的均匀温区,各个温区的温度变化均在±2℃以内,可以满足PCR的温度要求.微通道内中心区域流体流速最高,且由0.1~20 mm/s变化时,微滴在目标温区的停留时间减少,扩增效率降低.根据
对巨磁阻抗(GMI)效应的产生以及基于GMI效应制备的生物传感器的优势进行了简单阐述,分析了GMI生物传感器应用于生物检测的工作原理,并对GMI生物传感器的制备方法以及主要的薄膜结构对GMI比值的影响进行了综合介绍,总结了GMI生物传感器在生物检测中的应用,并重点阐述了GMI生物传感器在免疫磁珠、肿瘤标志物、细菌、病毒、细胞检测以及血栓模拟检测方面的研究进展.最后,对当前GMI生物传感器的检测应用所面临的困难进行了总结,并对GMI生物传感器未来的发展方向进行了展望.
基于静电纺丝获得多孔碳纳米纤维,随后高温锻烧制备出氮掺杂多孔碳纳米纤维(N-CNF),并将其作为钾离子电池的负极材料.通过场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线粉末衍射仪、Raman光谱仪和比表面积分析仪对目标产物进行了表征,研究了N-CNF负极材料的结构和形貌.N-CNF作为钾离子电池的负极材料,展现出了优异的电化学性能.在50和100 mA·g-1的电流密度下,N-CNF负极材料分别循环200圈和400圈后比容量还能分别高达239和163 mA· h· g-1.同时,N-