基于动态等待时间阈值的延迟调度算法

来源 :计算机应用研究 | 被引量 : 2次 | 上传用户:dave463
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对已有的延迟调度算法存在的两个问题,即建立在节点会很快空闲的理论假设下有一定限制,当节点不会很快空闲时算法性能严重下降和基于静态的等待时间阈值不能适应云计算数据中心动态的负载变化及不同用户作业的需求,提出了一种基于动态等待时间阈值的延迟调度算法(dynamic waiting time delay scheduling,DWTDS)。该算法通过给无本地数据节点设置节点最大等待时间,以适应节点不会很快空闲的情况;通过分析数据中心各动态参数,根据概率模型调整作业的等待时间阈值。实验验证该算法在响应时间
其他文献
针对多车牌定位中候选区域过多和结构元素选择不合理的问题,提出了一种基于分块投影和形态学分块处理的多车牌定位方法。对车牌图像进行预处理和水平差分处理,应用分块水平投影方法粗略定位车牌区域,用形态学分块处理确定车牌的候选区域,最后用车牌的特征去除伪车牌,定位出多个车牌。仿真实验结果表明,该方法能减少车牌候选区域,提高多车牌定位的效率。
工业互联网关键技术时间敏感网络TSN工作组会议和IEC/IEEE 60802《用于工业自动化的时间敏感网络(TSN IA)行规》国际标准制定会议于2019年1月14~18日在日本广岛召开。会议主
针对无线通信遇到的第三方窃听问题,利用无线通信系统信道多径延时丰富的特征,提出了一种保证物理层安全传输的加密算法。该算法中,数据发送用户根据估计的多径延时信息随机提前符号发送时间,使授权用户的同步位置有较强的多径信号到达,授权接收用户在保持同步状态不变的情况下可以正常接收信息。而窃听用户具有不同的信道多径延时特征,接收到的信号幅度和相位会随机变化,难以进行同步跟踪,因此接收到的符号会产生大量的误码
通过对轮式移动机器人轨迹跟踪优化问题的研究,提出了一种适应性强、收敛速度快且跟踪误差小的迭代滤波学习控制方法,充分发挥了迭代学习控制和Kalman滤波算法的优势,通过引入状态补偿项和设计新的迭代学习增益矩阵对迭代学习律进行了改进。改进的迭代学习控制能够更快速、更精确、更有效地跟踪期望的圆轨迹。采用离散的Kalman滤波器对干扰和噪声进行滤波,抑制了干扰和噪声对轨迹跟踪的影响,使该控制算法更适合于工
目前的经典多尺度系统Curverlet、Contourlet存在的主要缺点之一是它们无法将连续性与数字世界进行统一处理,而Shearlet系统是目前多尺度领域内唯一满足这一性质同时还提供对图像的最优稀疏表示的多尺度系统。提出一种用限制频带的Shearlet变换来进行多尺度分析,其主要通过对图像进行快速PPFT变换,以及加权和加窗处理得到Shearlet系数,通过SURE-LET变换进行噪声估计优化
绿洲里种植着棕榈树,偶尔经过的小湖闪烁着浅蓝色的微光。其余满目都是粉红色的沙丘,这种颜色确实不是阿尔及利亚人想看到的。然而阿尔及利亚瓶装水领导品牌古迪拉(Guedila)却反
当前可用的生物数据在不断地迅速增长,仍有很多生物信息如蛋白质交互信息(protein-protein interac-tion,PPI)还未被发现,而这些潜在的或未知的信息对生物过程的研究是至关重要的。近年来,对未知生物信息的挖掘和研究吸引了很多人的关注。通过实验检测方法来发现这些信息是非常耗时耗力的,所以链接预测成为一种新的挖掘这些信息的指导方法。基于蛋白质交互网络并融合了基因表达数据信息,从拓