论文部分内容阅读
针对人脸验证系统中复杂卷积神经网络(convolutional neural network,CNN)模型的计算负担大、运算速度慢的问题,提出使用卷积定理来加速人脸特征提取中的CNN卷积层计算,从而提升人脸验证的速度.卷积定理中,空域中的卷积运算等价于频域中的乘积运算.将耗时的卷积计算转化为频域中的乘积计算后,可能会显著减少计算量,且无精度损失.分析了用卷积定理计算卷积的时间复杂度,给出了卷积定理加速的适用条件.在进行傅里叶变换后,详细探讨了如何高效、并行地计算频域中的乘积求和,以便利用现有的并行线