论文部分内容阅读
对评价指标特征值采用等区间的划分方法以确定危险等级,忽略了指标特征值在一定条件下作进一步改进时的难易程度,具有明显的不合理性·为解决这一问题,利用模糊数学方法给出了定量指标特征值及其无量纲特征值的非线性模糊处理模型·为了使定性指标无量纲特征值的确定具有非线性意义,在采用定量指标无量纲特征值的非线性模糊分级标准的基础上,探讨了定性指标无量纲特征值的确定方法·为了充分体现专家的经验和判断,专家在为某一指标赋值时可给出区间数,然后运用模糊数学的综合分析法,以获得该指标的无量纲特征值·实例表明,对危险评价指标特征值及无量纲特征值的非线性模糊处理优于线性处理,它使危险评价结果更为符合实际·
For the eigenvalue of evaluation index, the method of interval division is adopted to determine the level of danger, ignoring the difficulty when the eigenvalue of eigenvalue is further improved under certain conditions, which is obviously unreasonable. To solve this problem, fuzzy mathematics The method gives the non-linear fuzzy model of quantitative index eigenvalues and their dimensionless eigenvalues. In order to make the determination of dimensionless eigenvalues of qualitative indexes non-linear, in the non-linear fuzzy classification standard which uses dimensionless eigenvalue of quantitative index , In order to fully reflect the expert’s experience and judgment, experts can give the interval number when assigning a certain index, and then use the comprehensive analysis method of fuzzy mathematics to obtain the The dimensionless eigenvalues and examples of this indicator show that the non-linear fuzzy processing of the eigenvalues and dimensionless eigenvalues of the hazard assessment index is superior to the linear one, which makes the risk assessment result more realistic