论文部分内容阅读
针对传统的视觉词典法存在的时间复杂度高,视觉单词同义性、歧义性和高维局部特征聚类不稳定问题,提出了一种基于随机化视觉词汇和聚类集成的目标分类方法。采用精确欧式位置敏感哈希(E2LSH)对训练图像库的局部特征点进行哈希映射,生成一组随机化视觉词汇;然后,聚类集成这组随机化视觉词汇,构建随机化视觉词汇集成词典(RVVAD);最后,基于该词典构建图像的视觉单词直方图并使用支持向量机(SVM)分类器完成目标分类。实验结果表明,本文方法有效增强了词典的表达能力,提高了目标分类的准确率。