论文部分内容阅读
针对当前纸病检测方法中纸病特征量难分离以及难点纸病特征量难构建的瓶颈问题,提出基于卷积神经网络(CNN)的纸病辨识方法。该方法根据纸病图像的特点设计了纸病检测的CNN结构,在此基础上利用CNN自动提取纸病图像的深层次特征,结合Softmax实现对纸病的辨识。实验结果表明,基于CNN的深层次特征提取纸病辨识方法优于现有的纸病检测方法,能够对包括难点纸病在内的各种纸病进行精确辨识。