论文部分内容阅读
为了实现对空气中的致敏花粉信息进行自动化统计,针对上海地区典型气传致敏花粉的光学显微镜图像,提出了基于形状和纹理特征的识别方法。对图像中分割得到的花粉区域,使用全局形状描述和傅里叶描述子提取形状信息,灰度共生矩阵提取纹理特征,并且构建k近邻分类器进行识别。选用桑科56例、禾本科25例和松科60例共141例实验样本,分别可以实现91%、88%和98%分类准确率。实验结果表明,该方法可以初步实现对花粉显微图像的分割和识别,为花粉的自动识别系统打下基础。