论文部分内容阅读
根据协同策略和量子免疫计算理论,提出一种求解SAT问题的量子协同免疫算法。该算法在将SAT问题转化为函数优化问题的基础上,采用多个子种群。分别采用量子比特编码来表达个体,采用通用的量子旋转门策略演化个体,采用量子交叉操作阻止早熟收敛;各种群独立演化,同时引入量子协同理论,采用协同算子使得算法的搜索效率更高。实验采用标准SATLAB库中的3700个不同规模的问题对算法进行测试,并与简单克隆选择算法、量子遗传算法、量子免疫克隆选择算法进行比较。结果表明,量子协同免疫算法的平均成功率最高,平均运行时间和平均评价